

TESTING FOR THE VERIFICATION OF COMPLIANCE OF MICROINVERTER WITH:

EN 50549-1: 2019:

REQUIREMENTS FOR GENERATING PLANTS TO BE CONNECTED IN PARALLEL WITH DISTRIBUTION NETWORKS - PART 1: CONNECTION TO A LV DISTRIBUTION NETWORK - GENERATING PLANTS UP TO AND INCLUDING TYPE B

(REQUIREMENTS FOR PLANTS TYPE B)

Test Report Number	•
Туре	. :
Tested Mark	
Trade Models	
Variant Models	. :

SUEE240500006451

Microinverter

AB400A, AB600A

APPLICANT

Name	:
Address	:

D&W The Motion Corporation GmbH&Co.KG Dückerweg 21, 44867 Bochum, Germany

TESTING LABORATORY

Name	SGS-CSTC Standards Tech Branch	nnical Services Co., Ltd. Suzhou
Address	1/F., Building 12, Xinxing Ind Suzhou Industrial Park, Suzh	lustry Park, No.78, Xinglin Street, nou, Jiangsu, China
Conducted (tested) by:	Horace Hao (Project Engineer)	Agrace Hard
Approved by	Colin Chen (Technical Reviewer)	John
Date of issue	2024/05/30	
Number of pages	148	

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Member of the SGS Group (SGS SA) TRF No. EEC_ EN 50549-1 B

Important Note:

- This document is issued by the Company under its General Conditions of service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.
- Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.
- Unless otherwise stated the results shown in this test report refer only to the sample(s) tested as received. Information of derived or extension models of the range as provided by the applicant, (if any), is included in this report only for informative purposes. The Company SGS shall not be liable for any incorrect results arising from unclear, erroneous, incomplete, misleading or false information provided by Client. This document cannot be reproduced except in full, without prior approval of the Company.

Data Provided By The Client:

The following data has been provided by the applicant:

- 1. Any information regarding technical characteristics of the equipment (ratings, operation modes, software and hardware versions, dimensions and weight).
- 2. Equipment operation & construction information (manuals, electrical diagrams, information about components, operation procedures).
- 3. Documental information (brand and models names, address or other information about applicant, company or manufacturer).
- 4. Other information remarked within this report.

SGS-CSTC Standards Technical Services Co., Ltd. Suzhou Branch declines any responsibility with respect to the information provided by the applicant and that it may affect to the validity of results. It is not covered by A2LA accreditation.

Test Report Historical Revision:

Test Report Version	Date	Resume
Test Report Version SUEE240500006451	Date 2024/05/30	Resume First issuance. Remarks: According to the declaration from the applicant, the only difference between the EUT (test samples in this report) and testing sample of report SUEE240400004851, which was issued by SGS-CSTC Standards Technical Services Co., Ltd. Suzhou Branch as below: -Update applicant, manufacturer, trademark, models name, label, appearance and equipment type ect. After evaluation, no clause needs to retest. All test data originate from the report SUEE24040004851, SGS-CSTC Standards
		rechnical Services Co., Lla. Suzhoù Branch.

INDEX

1.	SCOPE.		4
2.	GENERA	L INFORMATION	5
	2.1.	Testing Period and Climatic conditions	5
	2.2.	Equipment under Testing	5
	2.3.	Reference Values	9
	2.4.	Test equipment list	10
	2.5.	Measurement Uncertainty	10
	2.6.	Test set up of the different standard	
	2.7.	Factory Information	
	2.8.	Definitions	12
3.	RESUME	OF TEST RESULTS	13
4	TEST RE	27 11 12	15
	4 1	Normal operating range	15
	<u> </u>	Operating frequency range	15
	412	Minimal requirement for active power delivery at underfrequency	10
	413	Continuous operating voltage range	13
	4.1.5.	Immunity to disturbances	21
	421	Rate of change of frequency ($ROCOE$) immunity	22
	4.2.1.	Linder-voltage ride through (LIVRT)	22
	4.2.2.	Over-voltage ride through (OVRT)	25
	4.2.5.	Active response to frequency deviation	43
	4.0. // 3.1	Power response to overfrequency	6/
	432	Power response to underfrequency	-00 69
	ч.5.2. ДД	Power response to voltage changes	05
	 ЛЛ1	Setpoint control modes	70
	4.4.1. 112	Voltage related control mode	70
	4.4.2.	Voltage related control mode	01
	4.4.J.	Short circuit current requirements on generating plants	32
	4.4.4.	EMC and nower quality	95
	4.5.	Harmonic omissions	90
	4.5.1.	Flicker and voltage fluctuations	37
	4.5.2.	Interface protection	102
	4.0.	Requirements on voltage and frequency protection	102
	4.0.1.	Means to detect island situation	132
	4.0.2.	Digital input to the interface protection	137
	4.0.5. 4.7	Connection and starting to generate electrical power	137
	4.7.1	Automatic reconnection after tripping	137
	4.7.1.	Starting to generate electrical power	138
	4.7.2.	Sunchronization	1/1
	4.7.5.	Cessing and reduction of active power on set point	1/1
	4.0. / 8 1	Ceasing and reduction of active power on set point	1/1
	4.0.1.	Peduction of active power on set point	141
	4.0.∠. ∕IQ	Requirements regarding single fault tolerance of interface protection system and interface	
	ч.э.	ch	3001L
-	D	VII	143
5.	PICTURE	S	144
6.	ELECTRI	CAL SCHEME	148

1. SCOPE

SGS-CSTC Standards Technical Services Co., Ltd. Suzhou Branch has been contracted by D&W The Motion Corporation GmbH&Co.KG, in order to perform the testing according to the EN 50549 – 1: 2019: Requirements for generating plants to be connected in parallel with distribution networks - part 1: connection to a LV distribution network - generating plants up to and including type B.

The tests offered at this test report evaluate the EUT compliance with the requirements of **Type B**.

2. GENERAL INFORMATION

2.1. TESTING PERIOD AND CLIMATIC CONDITIONS

The necessary testing has been performed between November 16th of 2023, February 17th and April 10th of 2024.

All the tests and checks have been performed at climatic conditions:

Temperature	25 ± 5 ℃
Relative Humidity	50 ± 10 %
Pressure	96 ± 10 kPa

2.2. EQUIPMENT UNDER TESTING

Apparatus type:	Microinverter
Installation	Fixed installation
Manufacturer:	D&W The Motion Corporation GmbH&Co.KG
Trade mark: Model / Type reference	ABSAAR [®]
Serial Number:	WWA2344068
Software Version:	DH01.001-000-000
Rated Characteristics:	DC Input: MPPT 33~55 Vdc (60 Vdc max.), 14 A*2 Maximum.

AC Output: 230 Vac, 50 Hz, 3.48 A, 800 W.

Date of manufacturing: 2023

Test item particulars	
Input:	DC
Output	AC, L/N/PE
Class of protection against electric shock:	Class I
Degree of protection against moisture:	IP67
Type of connection to the main supply:	Single phase – Fixed installation
Cooling group:	Natural Cooling
Modular	No
Internal Transformer	Yes

Copy of marking plate (representative):

Microinverter Model:AB800A		OVER 40 YEARS OF GERMAN T	ECHNOLOGY
PV Max. Input Voltage :	60Vdc	Rated Output Power :	800W
Full load MPPT Voltage :	33~55Vdc	Rated Output Current :	3.48A
Operating Voltage Range :	16~60Vdc	Maximum Output Power :	800VA
Max. Input Current :	14Ax2	Output Power Factor :	>0.99
Input Shot-circuit Current :	25Ax2	Total Harmonic Distortion :	<3%
Nominal Grid Voltage :	230Vac	Protection Level :	IP67
Nominal Grid Frequency :	50Hz/60Hz	Degree of Protection :	,
Operating Temperature :	-40~+65°C	Overvoltage Level : PV II,	Grid III

CE A MSA International SA rue industrie 12 3895 Foetz

Note:

1. The above markings are the minimum requirements required by the safety standard. For the final production samples, the additional markings which do not give rise to misunderstanding may be added.

2.Label is attached on the back of enclosure and visible after installation

3.Labels of other models are as the same with AB800A's except for the parameters of rating.

Equipment Under Testing:

– AB800A

Variant models:

- AB400A
- AB600A

The variant models have been included in this test report without tests because the following features don't change regarding to the tested model:

- Same connection system and hardware topology.
- Same control algorithm.
- Output power within $1/\sqrt{10}$ and 2 times of the rated output power of the EUT or Modular inverters.
- Same Firmware Version.

The models of AB400A, AB600A and AB800A are identical on topological schematic circuit diagram and control solution codes.

The results obtained apply only to the particular sample tested that is the subject of the present test report.

The most unfavorable result values of the verifications and tests performed are contained herein.

Throughout this report a point (comma) is used as the decimal separator.

Following table shows the full ratings of all the models referenced in this report, marked in **bold letters** is the one subjected to testing:

Model	AB400A	AB600A	AB800A	
PV Input				
Number of MPPT Trackers		2		
Max. Input Voltage		60 Vdc		
Start-up Operating Voltage		30 Vdc		
Operating Voltage Range		16V-60 Vdc		
MPPT Voltage Range		33V-55 Vdc		
Max. Input Current	7 A * 2	12 A * 2	14 A * 2	
Max. Short Current	15 A * 2	20 A * 2	25 A * 2	
AC Output				
Nominal Grid Voltage	L/N/PE, 230Vac			
Nominal Grid Frequency		50 Hz		
Rated AC Power	400 W	600 W	800 W	
Max. AC Power	400 VA	600 VA	800 VA	
Rated AC Current	1.74 A 2.60 A 3.48 A			
Output Power Factor	>0.99			
General Data				
Operating temperature range	-40 °C ~ +65 °C			
Protection degree	IP67			
Protective class	Class I			
Altitude	Max. 2000m			
Cooling method	Natural Cooling			
Topology		Transformer		

2.3. REFERENCE VALUES

The values presented in the following table have been used for calculation of referenced values (p.u.; %) through the report.

Reference Values for the EUT		
Rated power, Pn in W	800	
Design active power, $\mathbf{P}_{\mathbf{D}}$ in W ⁽¹⁾	720	
Maximun apparent power, S max in VA	800	
Rated wind speed (only WT), vn in m/s	N/A	
Rated current, In in A	3.48	
Rated output voltage, (Line to Neutral) Un in Vac	230	
Note: In this report p.u. values are calculated as follow -For Active & Reactive Power p.u values are reference -For Currents p.u values, the reference is always In -For Voltages p.u values, the reference is always Un	s: e to Sn	

 $^{(1)}$ Manufacturer's declaration: P_D equals to 0.9 times of Rated AC Output power, according to measured $P_D\approx 0.9 Pn$ (720 W)

2.4. TEST EQUIPMENT LIST

From	No.	Equipment Name	Trademark / Model No.	Equipment No.	Calibration Period
	1	Power analyzer	ZLG/PA6004H- P0004-2159	SUZE600303	2023/11/05 to 2024/11/04
	2	Digital Oscilloscope	Tektronix / MSO46 4-BW-500	ATC550903	2023/07/13 to 2024/07/12
SGS	3	Oscilloscope probe	Tektronix/C188090	ATC550904	2023/08/08 to 2024/08/07
	4	Current probe	HIOKI/CT6873	SUZE600807	2023/09/08 to 2024/09/07
	5	Current probe	HIOKI/CT6873	SUZE600808	2023/09/08 to 2024/09/07
	6	Voltage probe	CYBERTEK/ CP1000A	SUZE600801	2023/09/08 to 2024/09/07
	7	Voltage probe	CYBERTEK/ CP1000A	SUZE600802	2023/09/08 to 2024/09/07
	8	Temperature & Humidity meter	Testo/ 175-H1	SUZE601701	2023/05/09 to 2024/05/08
	9	Power analyzer	DEWTRON/ TRIONet	SUZE600302	2023/08/10 to 2024/08/09

Note: Voltage direct measurement through power analyzer, the voltage probes and current probe were used with the digital oscilloscope. All measurement equipment was used inside their corresponding calibration period. Copy of all calibration certificates are available at the laboratory for reference.

2.5. MEASUREMENT UNCERTAINTY

Associated uncertainties through measurements showed in this report are the maximum allowable uncertainties.

Magnitude	Uncertainty
Voltage measurement	±1.5 %
Current measurement	±2.0 %
Frequency measurement	±0.2 %
Time measurement	±0.2 %
Power measurement	±2.5 %
Phase Angle	±1 °
Temperature	±3 °C

Note1: Measurement uncertainties showed in this table are maximum allowable uncertainties. The measurement uncertainties associated with other parameters measured during the tests are in the laboratory at disposal of the petitioner.

Note2: Where the standard requires lower uncertainties that those in this table. Most restrictive uncertainty has been considered.

2.6. TEST SET UP OF THE DIFFERENT STANDARD

Below is the simplified construction of the test set up.

Different equipments have been used to take measures as shown in chapter 2.4. Current clamps and vltage probes have been connected to the inverter input / output for all the tests.

All the tests described in the following pages have used this specified test setup.

EQUIPMENT	MENT TRADEMARK / MODEL RATED CHARACTERISTICS		OWNER / ID.CODE
AC source	WAGO / WLPA- 330150kVA-D-W	60 kVA max. 45-65 Hz	SUZE600101
DC source	EA/PSI 11500-60	1500V, 60A max.	SUZE600201
RLC load	KAIXIANG / AC400V- 450.99kVA-RLC	450 kW, 450kvar	SUZE660101

The test bench used includes:

2.7. FACTORY INFORMATION

Factory Name:	Shenzhen Donnergy Technology Co., Ltd
Factory Address	6F Building 8, Xianan Third Industrial Zone, Shangcun Community, Gongming Street, Guangming District, Shenzhen, China

2.8. DEFINITIONS

EUT	Equipment Under Testing	Hz	Hertz
А	Ampere	V	Volt
Un	Nominal Voltage	p.u	Per unit
In	Nominal Current	Pn	Rated Active Power
la	Active Current	Qn	Rated Reactive Power
Ir	Reactive Current	Sn	Rated Apparent Power
MV	Medium Voltage	THC	Total Harmonic Current
LV	Low Voltage	TDD	Total Demand Distortion
UVRT	Under-Voltage Ride Through	lh	Harmonic Current
OVRT	Over-Voltage Ride Through	Plt	Severity of Flicker Long-Term
Pst	Severity of Flicker Short-Term	ms	Millisecond
dc	Maximum Variation of Voltage	S	Second
d max	Maximum Absolute Value of	min	Minute
	Voltage Variation	Ρ	Active Power
fn	Nominal frequency	Q	Reactive Power
IGBT	Insulated-Gate Bipolar Transistor	PF	Power Factor
RMS	Root Mean Square	Nr.	Number
S _{k,fic}	Short-circuit apparent power	POC	Point of Connection
AC	Alternating Current	Meas.	Measured
DC	Direct Current	Des.	Desired
DSO	Distribution System Operator	PGU	Power Generating Unit
EESS	Electrical energy storage system	PD	Design active power
EES	Electrical energy storage	Рм	Momentary active power
Pmax	Maximum active power	Smax	Maximum apparent power
PA	Available active power		

3. RESUME OF TEST RESULTS

INTERPRETATION KEYS

Test object does meet the requirement:	Р	Pass
Test object does not meet the requirement:	F	Fails
Test case does not apply to the test object:	N/A	Not applicable
To make a reference to a table or an annex:	See ad	lditional sheet
To indicate that the test has not been realized:	N/R	Not realized

EN 50549-1:2019 – Requirements for plant category Type B have been considered.						
REPORT SECTION	STANDARD SECTION	CHAPTER OF THE STANDARD	Plant category	Result		
4.1	4.4	Normal operating range				
4.1.1	4.4.2	Operating frequency range	≥A	Р		
4.1.2	4.4.3	Minimal requirement for active power delivery at underfrequency	≥A	Ρ		
4.1.3	4.4.4	Continuous operating voltage range	≥A	Р		
4.2	4.5	Immunity to disturbances	≥A	Р		
4.2.1	4.5.2	Rate of change of frequency (ROCOF) immunity	≥A	Р		
4.2.2	4.5.3	Under-voltage ride through (UVRT)	В	Р		
4.2.3	4.5.4	Over-voltage ride through (OVRT)	≥A	Р		
4.3	4.6	Active response to frequency deviation	≥A	Р		
4.3.1	4.6.1	Power response to overfrequency	≥A	Р		
4.3.2	4.6.2	Power response to underfrequency	≥A	N/A		
4.4	4.7	Power response to voltage changes	≥A	Р		
4.4.1 and 4.4.2	4.7.2	Voltage support by reactive power	≥A	Р		
4.4.3	4.7.3	Voltage related active power reduction	≥A	Р		
4.4.4	4.7.4	Short circuit current requirements on generating plants	В	N/A		
4.5	4.8	EMC and power quality	≥A	N/R ⁽¹⁾		
4.5.1	4.8	Harmonic emissions	≥A	Р		
4.5.2	4.8	Flicker and voltage fluctuations	≥A	Р		
4.6	4.9	Interface protection	≥A	Р		
4.6.1	4.9.3	Requirements on voltage and frequency protection	≥A	Р		
4.6.2	4.9.4	Means to detect island situation	≥A	Р		
4.6.3	4.9.5	Digital input to the interface protection	≥A	Р		
4.7	4.10	Connection and starting to generate electrical power	≥A	Р		
4.7.1	4.10.2	Automatic reconnection after tripping	≥A	Р		
4.7.2	4.10.3	Starting to generate electrical power	≥A	Р		
4.7.3	4.10.4	Synchronization	≥A	Р		
4.8	4.11	Ceasing and reduction of active power on set point	≥A	Р		
4.8.1	4.11.1	Ceasing active power	≥A	Р		
4.8.2	4.11.2	Reduction of active power on set point	В	Р		
4.9	4.13 & 4.3	Requirements regarding single fault tolerance of interface protection system and interface switch	≥A	N/R ⁽²⁾		

Note: Decision Rule of Statements of conformity evaluated according to Guidelines ILAC G8:09/2019 and IEC 115:2023 (4.3.3 / 4.4) & ISO/IEC Guide 98-4 (8.3.12). **Decision Rules used: Binary Statement for Simple Acceptance** (Guard Band with respect to the limit w=0).

Specific Risk: Probability of False Accept or Reject lower than 50 %, (PFA / PFR < 50 %) Measurement uncertainty is not applied when statements of conformity is the simple acceptance. **For more information see ILAC G8/09 & 115 Guidelines.**

The compliances with these requirements are stated in the following test reports:

⁽¹⁾ EN IEC 61000-6-3: 2021; EN IEC 61000-6-1: 2019: Test Report no.GZCR231100125005C02 , issued by SGS-SCTS Standards Technical Services Co., Ltd. Guangzhou Branch, on May 28 of 2024. NVLAP LAB CODE 200611-0.

⁽²⁾ IEC 62109-1: 2010 and IEC 62109-2: 2011: Test Report no. GZES240100138501 and GZES240100138502, issued by SGS-SCTS Standards Technical Services Co., Ltd. Guangzhou Branch, on February 19 of 2024. GAC ATL 0032.

Conclusion: From the test results on the submitted sample, we conclude that it complies with the requirements of the standard.

4. TEST RESULTS

4.1. NORMAL OPERATING RANGE

4.1.1. Operating frequency range

The test has been performed according to the clause 4.4.2 of the standard, the requirement is as follows:

	Time period for operation	Time period for operation					
Frequency Range	Minimum requirement	stringent requirement					
47,0 Hz – 47,5 Hz	not required	20 s					
47,5 Hz – 48,5 Hz	30 min ª	90 min					
48,5 Hz – 49,0 Hz	30 min *	90 min °					
49,0 Hz – 51,0 Hz	Unlimited	Unlimited					
51,0 Hz – 51,5 Hz	30 min ª	90 min					
51,5 Hz – 52,0 Hz	not required	15 min					
Respecting the legal framework, it is possible that longer time periods are required by the responsible party in some synchronous areas.							

Table 1 — Minimum time periods for operation in underfrequency and overfrequency situations

"Time period for operation, stringent requirement" (second column of the table) has been considered for this test.

In order to verify this function, parameter settings as in the following table have been considered to perform the test. Time requirements considered are the "stringent requirement" according to Table 1 of the standard:

Steps	f (Hz) Setting	Time requirement	f Measured (Hz)	Time Measured (min)	Power measured (p.u.)
1	47.00	>20 s	47.00	3.00	1.002
2	47.50	>90 min	47.50	95.00	1.000
3	48.50	>90 min	48.50	100.00	1.007
4	50.00	Unlimited	50.00	2.83	1.006
5	51.50	>90 min	51.50	95.00	0.999
6	52.00	>15 min	52.00	16.50	1.003

Test results are represented at diagrams below.

4.1.2. Minimal requirement for active power delivery at underfrequency

The test has been performed according to the clause 4.4.3 of the standard, the requirement is as follows:

A generating plant shall be resilient to the reduction of frequency at the point of connection while reducing the maximum active power as little as possible.

The admissible active power reduction due to underfrequency is limited by the full line in Figure 5 of the standard and is characterized by a maximum allowed reduction rate of 10 % of Pmax per 1 Hz for frequencies below 49.5 Hz.

It is possible that a more stringent power reduction characteristic is required by the responsible party. Nevertheless this requirement is expected to be limited to an admissible active power reduction represented by the dotted line in Figure 5 which is characterised by a reduction rate of 2 % of the maximum power Pmax per 1 Hz for frequencies below 49 Hz.

Figure 5 — Maximum allowable power reduction in case of underfrequency

As defined by manufacturer, the power will not reduce when the frequency is below 49.5 Hz.

		f	Time	Time	Time		Р	Р	Р
Step	f (Hz) Setting	meas.	start	end	meas.	Time (s)	desired	meas.	deviation
		(Hz)	(s)	(s)	(s)		(p.u.)	(p.u.)	(p.u.)
1	50.00 ± 0.05	50.00	0.0	120.8	120.8	>60	1.000	1.006	+0.006
2	49.50 ± 0.05	49.50	121.8	240.4	118.6	>60	1.000	1.006	+0.006
3	49.00 ± 0.05	49.00	241.8	361.0	119.2	>60	1.000	1.005	+0.005
4	48.50 ± 0.05	48.50	361.8	480.4	118.6	>60	1.000	1.006	+0.006
5	48.00 ± 0.05	48.00	481.8	601.0	119.2	>60	1.000	1.008	+0.008
6	47.50 ± 0.05	47.50	601.8	720.6	118.8	>60	1.000	1.007	+0.007
7	50.00 ± 0.05	50.00	721.8	840.0	118.2	>60	1.000	1.008	+0.008

Test results are represented at diagrams below.

4.1.3. Continuous operating voltage range

SGS

The test has been performed according to the clause 4.4.4 of the standard, the requirement is as follows:

The generating plant shall be capable of operating continuously when the voltage at the point of connection stays within the range of 85%Un to 110%Un.

In order to verify this function, the parameter setting is as follows to perform the test:

Step	V desired (p.u.)	P desired (p.u.)	V meas. (p.u.)	P meas. (p.u.)	Time start (s)	Time end (s)	Time meas. (s)
1	1.000	1.000	1.000	1.000	0.0	299.8	299.8
2	0.850	1.000	0.850	0.850 (1)	301.2	600.4	299.2
3	1.000	1.000	1.000	1.001	601.2	899.2	298.0
4	1.100	1.000	1.100	0.988	901.2	1200.0	298.8

⁽¹⁾ Active power reduction is allowed due to current limitation.

Test results are represented at diagrams below.

4.2. IMMUNITY TO DISTURBANCES

4.2.1. Rate of change of frequency (ROCOF) immunity

The test has been performed according to the clause 4.5.2 of the standard, the requirement is as follows:

• Non-synchronous generating technology: at least 2 Hz/s

The ROCOF immunity is defined with a sliding measurement window of 500 ms as follows:

Steps	f (Hz)	ROCOF requirement (Hz/s)	Step time	Measured frequency (Hz)	Measured step change time (s)	ROCOF meas. (Hz/s)	Discon- nection
1	50.00 ± 0.05	N/A	>10 s	50.00			No
2	52.00 ± 0.05	>2	>10 s	52.00	0.8	+2.5	No
3	50.00 ± 0.05	>2	>10 s	50.00	0.8	-2.5	No
4	48.00 ± 0.05	>2	>10 s	48.00	0.8	-2.5	No
5	50.00 ± 0.05	>2	>10 s	50.00	0.8	+2.5	No

4.2.2. Under-voltage ride through (UVRT)

The requirements are defined in the clause 4.5.3 of the standard. The test uses the most stringent line in the following figure.

4.2.2.1. No load Test

It is not specified in the reference standard, but following tolerances have been applied. Tolerances for drop depth and duration during no-load tests shall not exceed the values shown in the next figure:

The tolerance for voltage magnitude is $\pm 5\%$ Un for the period before and during the voltage drop. The tolerance for voltage magnitude is $\pm 10\%$ Un during the period after voltage is recovered. The tolerance range for both drop duration and rise time prefers 40 ms.

	No Load									
Phase type	Residual voltage desired (%Un)	Voltage before fault (%Un)	Voltage drop time (ms)	Residual voltage Measured (%Un)	Dip time desired (ms)	Dip time measured (ms)	Power recovery time (ms)	Voltage after recovery (%Un)		
1 ph	0.0-5.0	100.2	19	3.0	≥ 250	259		99.4		
1 ph	25.0	100.2	18	25.0	≥ 938	978		100.4		
1 ph	50.0	100.0	19	50.1	≥ 1797	1810		99.7		
1 ph	75.0	100.2	17	75.0	≥ 2656	2703		100.1		

Test results of different no-load cases performed are offered below:

Test results are graphically represented in the following pages.

No Load Residual voltage: 0~5 %Un											
Voltage DropTime											
		<u>,</u>									
3											
2											
ş											
3											
۵ 	·····										
			010070								
0:17.850	0:17.900	.95 B 0118.000	0:18.050								
छन्ते छा ।	A 0:17.93509505	в 0:17.95451091	Шр а 0.01941586								
U1_tRMS_rc@AC [V]	230.3522	7.005990	-223.3462								
I1_tRMS_rc@AC [A]	0.018632	0.019045	4.127e-4								
P_t_rc@AC [W]	0.144148	-0.010078	-0.154226								
■Q_t_rc@AC [Var] ■S_t_rc@AC [VA]	4.289526	0.133428	-4.158520								
	Dip Ti	me									
SI CONTRACTOR OF	[1									
۹ 		·····									
		B 018.25	0:18.50								
		B 01825	018.50 回隔 2 1514022								
		B 0:825 B 0:825 B 0:18.21409001 c occe20	0.18.50 间隔 0.25914023								
		B 0:18.25 B 0:18.25 B 0:18.2409001 6.965839 0.018689	018.50 018.50 018.50 018.50 018.50 018.50 018.50 018.50 018.50 018.50 018.50 018.50 018.50 018.50 018.50								
Image: state of the s		B 0:18.25 B 0:18.25 B 0:18.25 B 0:18.21409001 6.965839 0.018689 -3.911e-3	018.50 018.50 间隔 0.25914023 0.040150 3.560e-4 6.167e-3								
۲ ۲ ۲ ۲	A 0:17.95494978 7.005990 0.019045 -0.010078 0.13047	B 0.18.25 B 0.18.25 B 0.18.21409001 6.965839 0.018689 -3.911e-3 0.130125	018.50 018.50 间隔 0.25914023 -0.040150 -3.560e-4 6.167e-3 -2.922e-3								

4.2.2.2. Load Tests: Partial load (20 %Pn)

Test results of different 20%Pn load cases performed are offered below:

20 %Pn Load											
Phase type	Residual voltage desired (%Un)	Voltage before fault (%Un)	Voltage drop time (ms)	Residual voltage Measured (%Un)	Dip time desired (ms)	Dip time measured (ms)	Power recovery time (ms)	Voltage after recovery (%Un)			
1 ph	0.0-5.0	100.0	20	3.0	≥ 250	258	138	100.3			
1 ph	25.0	100.2	19	25.0	≥ 938	978	186	99.9			
1 ph	50.0	99.8	18	50.0	≥ 1797	1808	157	100.0			
1 ph	75.0	100.2	18	75.0	≥ 2656	2676	238	99.9			

4.2.2.3. Load Tests: Partial load (> 90 %Pn)

Test results of full power cases performed are offered below:

	> 90 %Pn Load										
Phase type	Residual voltage desired (%Un)	Voltage before fault (%Un)	Voltage drop time (ms)	Residual voltage Measured (%Un)	Dip time desired (ms)	Dip time measured (ms)	Power recovery time (ms)	Voltage after recovery (%Un)			
1 ph	0.0-5.0	100.2	19	3.0	≥ 250	259	736	100.0			
1 ph	25.0	100.0	18	25.0	≥ 938	979	273	100.0			
1 ph	50.0	100.0	18	50.0	≥ 1797	1810	629	100.0			
1 ph	75.0	100.0	18	75.0	≥ 2656	2692	421	100.0			

Test results are graphically represented at following pages.

Over-voltage ride through (OVRT) 4.2.3.

The test has been performed according to the clause 4.5.4 of the standard. The setting of over-voltage ride through capability is as follows:

Figure 8 — Over-voltage ride through capability

4.2.3.1 No load Test

It is not specified in the reference standard, but following tolerances have been applied. Tolerances for drop depth and duration during no-load tests shall not exceed the values shown in the next figure:

The tolerance for voltage magnitude is ±5%Un for the period before and during the voltage drop. The tolerance for voltage magnitude is ±10%Un during the period after voltage is recovered. The tolerance range for both drop duration and rise time prefers 40 ms.

FΝ	50549-	1.	2019	
_	00010		2010	

Test results of different no-load cases performed are offered below:

	L-N fault									
Residual	Voltage	Voltago	Residual	DipTime (ms)		Power	Voltage			
voltage Desired (%Un)	before sag (%Un)	Rise time (ms)	voltage Measured (%Un)	Desired	Meas.	Recovery time (ms)	after Recovery (%Un)			
125.0	100.0	18	125.0	> 100	112		100.2			
120.0	100.0	17	120.2	> 5000	5072		100.3			
115.0	100.1	16	115.1	> 60000	60929		100.1			

Test results are graphically represented at following pages.

Voltage recovery time

4.2.3.2 Load Tests: Partial load (20%Pn)

Test results of 20%Pn power cases performed are offered below:

L-N fault									
Residual	Voltage	Voltage	Residual	DipTime (ms)		Power	Voltage		
voltage Desired (%Un)	before sag (%Un)	Rise time (ms)	voltage Measured (%Un)	Desired	Meas.	Recovery time (ms)	after Recovery (%Un)		
125.0	100.0	18	125.1	> 100	113	240	100.1		
120.0	100.1	18	120.2	> 5000	5281	243	100.1		
115.0	100.0	17	115.0	> 60000	60903	282	100.0		

4.2.3.2 Load Tests: Full Load (> 90 %Pn)

Test results of full power cases performed are offered below:

L-N fault									
Residual	Voltage	Voltago	Residual	DipTime (ms)		Power	Voltage		
voltage Desired (%Un)	before sag (%Un)	Rise time (ms)	voltage Measured (%Un)	Desired	Meas.	Recovery time (ms)	after Recovery (%Un)		
125.0	100.0	18	125.1	> 100	112	875	100.0		
120.0	100.0	17	120.0	> 5000	5270	987	100.0		
115.0	100.0	18	115.2	> 60000	60947	223	100.1		

4.3. ACTIVE RESPONSE TO FREQUENCY DEVIATION

4.3.1. Power response to overfrequency

The test has been performed according to the clause 4.6.1 of the standard. The following definitions apply to the test to verify the clause:

- Test 1: P = 100 %Pn; f1 = 50.2 Hz; droop = 12 %; f-stop deactivated, with delay of 2 s⁽¹⁾
- Test 2: P = 100 %; f1 = 52.0 Hz; droop = 2 %; function deactivated
- Test 3: P = 50 %; f1 = 51.0 Hz; droop = 5 %; f-stop deactivated, no delay
- Test 4: P = 100 %, f1 = 50.2 Hz; droop = 5 %; f-stop = 50.1 Hz (hysteresis), no delay

⁽¹⁾ The intentional delay is only active for the activation of the function, once the function is operating, the established control loop is not intentionally delayed.

Note:

Threshold for discconnection overfrequency protection is set at 52.0 Hz at each test items.

Test results are offered at the table below.

	Test 1							
Step	Frequency (Hz)	P desired (%Pn)	Frequency meas. (Hz)	P meas. (%Pn)	P deviation (%Pn) (within ±10 %)			
1	50.00 ± 0.05 Hz	100.0	50.00	99.9	-0.1			
2	50.20 ± 0.05 Hz	100.0	50.20	99.8	-0.2			
3	51.00 ± 0.05 Hz	86.7	51.00	86.7	0.0			
4	51.80 ± 0.05 Hz	73.3	51.80	74.5	+1.2			
5	50.20 ± 0.05 Hz	100.0	50.20	99.8	-0.2			
6	50.00 ± 0.05 Hz	100.0	50.00	100.0	0.0			
		Time delay	setting from step 2	to step 3				
	Time reference of ch	ange (s)	360.2					
	End of delay (s)	363.4					
	Delay time (s	;)	3.2					
	End of change	(s)	364.4					
	Change time ((S)	1.0					

Test 2								
Step	f (Hz)	P desired (%Pn)	Frequency meas. (Hz)	P meas. (%Pn)	P deviation (%Pn) (within ±10 %)			
1	50.00 ± 0.05 Hz	100.0	50.00	99.8	-0.2			
2	50.50 ± 0.05 Hz	100.0	50.50	99.3	-0.7			
3	51.00 ± 0.05 Hz	100.0	51.00	99.5	-0.5			
4	51.50 ± 0.05 Hz	100.0	51.50	99.5	-0.5			
5	51.80 ± 0.05 Hz	100.0	51.80	99.4	-0.6			
6	52.20 ± 0.05 Hz	0.0	52.20	0.0	0.0			

	Test 3								
Step	Frequency (Hz)	P desired (%Pn)	Frequency meas. (Hz)	P meas. (%Pn)	P deviation (%Pn) (within ±10 %)				
1	50.00 ± 0.05 Hz	50.0	50.00	50.1	+0.1				
2	51.00 ± 0.05 Hz	50.0	51.00	49.9	-0.1				
3	51.20 ± 0.05 Hz	46.0	51.20	45.9	-0.1				
4	51.70 ± 0.05 Hz	36.0	51.70	36.0	0.0				
5	51.30 ± 0.05 Hz	44.0	51.30	43.9	-0.1				
6	51.00 ± 0.05 Hz	50.0	51.00	49.9	-0.1				
7	50.00 ± 0.05 Hz	50.0	50.00	50.0	0.0				
		Time delay	setting from step 2	to step 3					
	Time reference of ch	ange (s)	598.0						
	End of delay (s)	598.4						
Delay time (s)			0.4						
	End of change	(s)	598.8						
	Change time ((s)	0.4						

Test 4							
Step	Frequency (Hz)	P desired (%Pn)	Frequency meas. (Hz)	P meas. (%Pn)	P deviation (%Pn) (within ±10 %)		
1	50.00 ± 0.05 Hz	100.0	50.00	99.8	-0.2		
2	50.20 ± 0.05 Hz	100.0	50.20	99.7	-0.3		
3	51.00 ± 0.05 Hz	68.0	51.00	68.2	+0.2		
4	50.30 ± 0.05 Hz	68.0	50.30	68.0	0.0		
5	51.00 ± 0.05 Hz	68.0	51.00	68.2	+0.2		
6	52.00 ± 0.05 Hz	28.0	52.00	28.3	+0.3		
7	51.00 ± 0.05 Hz	28.0	51.00	28.5	+0.5		
8	50.50 ± 0.05 Hz	28.0	50.50	28.5	+0.5		
9	50.20 ± 0.05 Hz	28.0	50.20	28.4	+0.4		
10	50.00 ± 0.05 Hz	100.0	50.00	99.8	-0.2		
		Time delay s	setting from step 2 to step 3				
-	Time reference of cha	ange (s)	241.2				
	End of delay (s	5)	241.8				
Delay time (s)			0.6				
End of change (s)			242.2				
Change time (s)			0.4				
	Recovery Time	(s)	379.4				
P	ower ramp gradient (%Pn/min)		7.8			

4.3.2. Power response to underfrequency

SGS

This test has not been performed to show the capability of the inverter, because it is only mandatory for Energy Storage Systems according to the clause 4.6.2 of the standard.

4.4. POWER RESPONSE TO VOLTAGE CHANGES

The generating unit shall be capable of operating in the control modes specified below within the limits specified in 4.7.2.2. The control modes are exclusive, only one mode may be active at a time.

- Q setpoint mode
- Q(U)
- Cos φ setpoint mode
- Cos φ (P)

4.4.1. Setpoint control modes

The test has been performed according to the clause 4.7.2.3.2 of the standard. The following definitions apply to the test to verify the clause:

- Test 1: Q Zero (Q = 0 % P_D)
- Test 2: Rectangular Curve ($Q = \pm 43.6\%$ Sn = $\pm 48.4\%$ PD)
- Test 3: Triangular Curve ($PF = \pm 0.8$)
- Test 4: Reactive power capability at active power P_D in the voltage range (0.85Un ~ 1.1Un)

4.4.1.1. Test 1: Q Zero (Q = 0 % P_D)

This test verifies the capability of the inverter to provide a fixed value of reactive power. In addition, it is verified the Q control mode.

When the measurement is equal to or greater than 10% Sn, the allowable tolerance of reactive power measurement should be within $\pm 2\%$ Smax or $\pm 2.2\%$ P_D.

Test results are offered at tables below.

Rectangular Curve (Q=0% P _D)									
P Desired (%Sn)	P measured (%Sn)	Q desired (%P _D)	Q measured (%P _D)	Q deviation (±2.2% P _D)	Power Factor (cos φ)				
0.0	0.0		+0.5	(1)					
10.0	9.8	0.0	+0.4	+0.4	0.999				
20.0	19.6	0.0	+0.4	+0.4	1.000				
30.0	29.7	0.0	+0.4	+0.4	1.000				
40.0	39.5	0.0	+0.4	+0.4	1.000				
50.0	49.5	0.0	+0.4	+0.4	1.000				
60.0	60.5	0.0	+0.4	+0.4	1.000				
70.0	70.5	0.0	+0.4	+0.4	1.000				
80.0	80.3	0.0	+0.4	+0.4	1.000				
90.0	90.2	0.0	+0.4	+0.4	1.000				
100.0	100.1	0.0	+0.4	+0.4	1.000				

⁽¹⁾ The reactive power accuracy is $\pm 2\%$ Smax, which is not suitable for power below 10%Pn.

Note: Pn is with respect to Sn , Qn is according to measured PD pprox 0.9 Pn (720 W)

4.4.1.2. Test 2: Rectangular Curve (Q = ±43.6%Sn =±48.4%P_D)

This test verifies the capability of the inverter to provide a fixed value of reactive power. In addition, it is verified the Q control mode.

When the measurement is equal to or greater than 10% Sn, the allowable tolerance of reactive power measurement should be within $\pm 2\%$ Smax or $\pm 2.2\%$ P_D.

Test results are offered at tables below.

	Rectangular Curve (Q=48.4 %P _D / Capacitive)								
P Desired	d P measured Q desired		Q measured	Q Deviation	Power Factor				
(%Sn)	(%Sn)	(%P _D)	(%P _D)	(±2.2%P _D)	(cos φ)				
0	0.1	(1)	-48.7	(1)	0.001				
10	10.7	-48.4	-48.7	-0.3	0.215				
20	20.4	-48.4	-48.7	-0.3	0.389				
30	30.4	-48.4	-48.7	-0.3	0.532				
40	40.3	-48.4	-48.7	-0.3	0.640				
50	50.3	-48.4	-48.7	-0.3	0.721				
60	60.3	-48.4	-48.7	-0.3	0.780				
70	70.1	-48.4	-48.7	-0.3	0.823				
80	80.0	-48.4	-48.7	-0.3	0.856				
90	90.2	-48.4	-48.7	-0.3	0.899				
100	90.2 ⁽²⁾	-48.4	-48.7	-0.3	0.899				

Rectangular Curve (Q=48.4 %P _D / Inductive)								
P Desired	d P measured Q desired		Q measured	Q Deviation	Power Factor			
(%Sn)	(%Sn)	(%P _D)	(%P _D)	(±2.2%P _D)	(cos φ)			
0	0.1	(1)	+48.4	(1)	0.002			
10	10.7	+48.4	+48.4	0.0	0.238			
20	20.4	+48.4	+48.4	0.0	0.424			
30	30.4	+48.4	+48.4	0.0	0.572			
40	40.3	+48.4	+48.4	0.0	0.679			
50	50.3	+48.4	+48.4	0.0	0.756			
60	60.2	+48.4	+48.4	0.0	0.810			
70	70.1	+48.4	+48.4	0.0	0.849			
80	80.0	+48.4	+48.4	0.0	0.878			
90	90.0	+48.4	+48.4	0.0	0.900			
100	90.0 (2)	+48.4	+48.4	0.0	0.900			

⁽¹⁾ The reactive power accuracy is $\pm 2.2\%$ P_D, which is not suitable for power below 10% Sn.

⁽²⁾ Test performed in reactive power priority mode. Working in this mode, the inverter can't output the desired active power due to current limitation, so don't consider the deviation value.

Note: Pn is with respect to Sn , Qn is according to measured PD pprox 0.9 Pn (720 W)

Test results are represented at diagrams below.

Supplementary information: p.u. values for P and S are given in reference to Sn, p.u. values for Q are given in reference to P_{D} .

4.4.1.3. Test 3: Triangular Curve (PF = ± 0.8)

SGS

This test verifies the capability of the inverter to provide a fixed value of power factor. In addition, it is verified the PF control mode.

When the measurement is equal to or greater than 1 colin0% Sn, the allowable tolerance of reactive power measurement should be within $\pm 2\%$ Smax.

Test results are offered at the tables below.

Triangular Curve (PF = 0.8 / Capacitive)								
P desired (%Sn)	P measured (%Sn)	Q measured (%Sn)	Q desired (%Sn) ⁽³⁾	Q desired (%Sn) ⁽³⁾ Q deviation (±2%Sn)		Power factor deviation (cos φ)		
0	0.0	0.0	0.0	(1)	(1)	(1)		
10	9.8	-7.5	-7.5	+0.0	0.798	-0.002		
20	19.7	-15.1	-15.0	+0.1	0.798	-0.002		
30	29.7	-22.6	-22.5	+0.1	0.798	-0.002		
40	39.5	-30.0	-30.0	+0.0	0.798	-0.002		
50	49.6	-37.6	-37.5	+0.1	0.798	-0.002		
60	59.6	-45.1	-45.0	+0.1	0.798	-0.002		
70	70.5	-52.5	-52.5	+0.0	0.798	-0.002		
80	80.2	-60.0	-60.0	+0.0	0.798	-0.002		
90	80.3 (2)	-60.0	-67.5	(2)	0.798	-0.002		
100	80.3 (2)	-60.0	-75.0	(2)	0.798	-0.002		

	Triangular Curve (PF = 0.8 / Inductive)									
P desired (%Sn)	P measured (%Sn)	Q measured (%Sn)	Q desired (%Sn) ⁽³⁾	Q deviation (±2%Sn)	Power factor measured (cos φ)	Power factor deviation (cos φ)				
0	0.0	0.4	0.0	(1)	(1)	(1)				
10	9.8	+7.4	+7.5	-0.1	0.799	-0.001				
20	19.7	+14.8	+15.0	-0.2	0.799	-0.001				
30	29.7	+22.3	+22.5	-0.2	0.799	-0.001				
40	39.5	+29.7	+30.0	-0.3	0.799	-0.001				
50	49.6	+37.3	+37.5	-0.2	0.799	-0.001				
60	59.7	+44.9	+45.0	-0.1	0.799	-0.001				
70	69.4	+52.3	+52.5	-0.2	0.799	-0.001				
80	79.4	+59.7	+60.0	-0.3	0.799	-0.001				
90	80.3 ⁽²⁾	+60.4	+67.5	(2)	0.799	-0.001				
100	80.3 (2)	+60.5	+75.0	(2)	0.799	-0.001				

⁽¹⁾ The reactive power accuracy is $\pm 2\%$ Sn, which is not suitable for power below 10%Sn.

⁽²⁾ Test performed in reactive power priority mode. Working in this mode, the inverter can't output the desired active power due to current limitation, so don't consider the deviation value.

 $^{(3)}$ Q desired value is calculated from the desired power and fixed power factor (PF = 0.8).

Test results are represented at the diagrams below.

4.4.1.4. Test 4: Reactive power capability at active power P_D in the voltage range (0.85Un~1.1Un)

This test verifies the capability of the inverter to provide reactive power capability at active power P_D in the voltage range, as the Figure 13 of standard:

Figure 13 — Reactive power capability at active power P_D in the voltage range (positive sequence component of the fundamental)

Allowed tolerance for reactive power measurements is to be considered inside $\pm 2\%$ Sn or $\pm 2.2\%$ P_D

	Reactive power capability at active power P_D in the voltage range									
Step	Voltage desired (p.u.)	Voltage meas. (p.u.)	P desired (%Sn)	P meas. (%Sn)	Q meas. (%P₀)	Q desired (%P _D)	Q devation (±2.2%P _D)	Power Factor measured (cos φ)		
1	1.100	1.100	90.0	90.1	-48.5	-48.4	-0.1	0.900		
2	1.100	1.100	90.0	90.1	+1.5	0.0	+1.5	1.000		
3	1.050	1.050	90.0	89.9	+48.2	+48.4	-0.2	0.901		
4	1.000	1.000	90.0	90.2	+48.2	+48.4	-0.2	0.901		
5	0.900	0.900	90.0	80.8 (1)	+43.6	+43.6	-0.0	0.900		
6	0.850	0.850	90.0	76.3 (1)	+41.1	+41.2	-0.1	0.900		
7	0.850	0.850	90.0	85.2 (1)	+2.0	0.0	+2.0	1.000		
8	0.900	0.900	90.0	89.8	+2.0	0.0	+2.0	1.000		
9	0.950	0.950	90.0	84.3	-48.3	-48.4	+0.1	0.889		
10	1.000	1.000	90.0	89.5	-48.3	-48.4	+0.1	0.899		
11	1.050	1.050	90.0	90.4	-48.3	-48.4	+0.1	0.901		
12	1.100	1.100	90.0	89.8	-48.3	-48.4	+0.1	0.900		

Test results are offered at the tables below.

⁽¹⁾ Since the working mode is reactive power priority, the active power cannot reach the expected value due to current limitation.

Note: Pn is with respect to Sn , Qn is according to measured PD pprox 0.9 Pn (720 W)

Test results are represented at diagrams below.

4.4.2. Voltage related control mode

4.4.2.1. Voltage related control mode Q(U)

The test has been performed according to the clause 4.7.2.3.3 of the standard.

Note: This feature is optional, enabling and disabling the feature and its settings can be modified or adjusted through the manufacturer's guidelines.

Setting the characteristic as following to prove configurability of the inverter:

- U1 = 0.93, Qmax=43.6%Pn=48.4%PD
- U2 = 0.96, Q= 9.0%Pn=10.0% P_D
- U3 = 1.04, Q= 9.0%Pn=-10.0% PD
- U4 = 1.07, -Qmax= 43.6%Pn= 48.4%PD

Figure 16 — Example characteristics for Q respectively cos φ control mode

Test results are offered at the tables below.

	Undervoltage Test									
P/Pn setpoint (%)	U setpoint	P measured (%Sn)	V measured (p.u.)	Q measured (%P₀)	Q desired (%P _D)	ΔQ (p.u.) (±2.2%P _D)				
50	1.000 Un	50.7	1.000	+0.0	0.0	+0.0				
50	0.990 Un	50.8	0.990	+2.5	+2.5	+0.0				
50	0.980 Un	50.8	0.980	+5.0	+5.0	-0.0				
50	0.970 Un	50.9	0.970	+7.5	+7.5	+0.0				
50	0.960 Un	51.0	0.960	+10.0	+10.0	-0.0				
50	0.950 Un	51.1	0.950	+22.8	+22.8	+0.0				
50	0.940 Un	51.2	0.940	+35.6	+35.6	+0.0				
50	0.930 Un	51.2	0.930	+48.2	+48.4	-0.2				
50	0.920 Un	51.3	0.920	+48.2	+48.4	-0.2				
50	0.910 Un	51.4	0.910	+48.2	+48.4	-0.2				
50	0.900 Un	51.5	0.900	+48.2	+48.4	-0.2				
50	0.950 Un	51.1	0.950	+22.8	+22.8	+0.0				
50	1.000 Un	50.7	1.000	+0.2	0.0	+0.2				

Overvoltage Test								
P/Pn setpoint (%)	U setpoint	P measured (%Sn)	V measured (p.u.)	Q measured (%P₀)	Q desired (%P₀)	ΔQ (p.u.) (±2.2%P _D)		
50	1.000 Un	49.9	1.000	0.0	0.0	-0.0		
50	1.010 Un	49.6	1.010	-2.5	-2.5	-0.0		
50	1.020 Un	49.5	1.020	-5.0	-5.0	-0.0		
50	1.030 Un	49.4	1.030	-7.5	-7.5	-0.0		
50	1.040 Un	49.3	1.040	-10.0	-10.0	-0.0		
50	1.050 Un	49.3	1.050	-22.8	-22.8	+0.0		
50	1.060 Un	49.2	1.060	-35.6	-35.6	-0.0		
50	1.070 Un	49.7	1.070	-48.2	-48.4	+0.2		
50	1.080 Un	49.0	1.080	-48.3	-48.4	+0.1		
50	1.090 Un	48.9	1.090	-48.3	-48.4	+0.1		
50	1.100 Un	48.8	1.100	-48.3	-48.4	+0.1		
50	1.050 Un	49.3	1.050	-22.8	-22.8	-0.0		
50	1.000 Un	49.8	1.000	+0.3	0.0	+0.3		

Test results are represented at diagrams below.

Supplementary information: p.u. values for P and S are given in reference to Sn, p.u. values for Q are given in reference to P_{D} .

4.4.2.2 Voltage related control mode Q(U) with lock-in/lock-out function

SGS

The test has been performed according to the clause 4.7.2.3.3 of the standard.

Two active power levels shall be configurable both at least in the range of 0 % to 100 % of P_D . The lockin value turns the Q(U) mode on, the lock-out value turns Q(U) off. If lock-in is larger than lock-out a hysteresis is given. See also Figure 14 in the standard.

Figure 14 – Example of lock-in and lock-out values for Q(U) mode

Setting the characteristic as following to prove configurability of the inverter:

- U1 = 0.93, Qmax= 43.6%Pn= 48.4%PD
- U2 = 0.96, Q= 9.0%Pn= 10.0% P_D
- U3 = 1.04, Q= 9.0%Pn= -10.0% P_D
- U4 = 1.07, -Qmax= 43.6%Pn=- 48.4%P_D
- P lock-in = 30%Pn=33.3%PD, P lock-out = 20%Pn=22.2%PD

Reactive power injection in relation with the Voltage (Inductive)								
P/Pn setpoint (%Pn)	U setpoint (p.u.)	P measured (%Sn)	V measured (p.u.)	Q measured (%P _D)	Q desired (%P _D)	ΔQ (p.u.) (±2.2%P _D)		
<20.0	0.920	15.7	0.920	+0.7	0.0	+0.7		
25.0	0.920	25.5	0.920	+0.7	0.0	+0.7		
35.0	0.920	35.4	0.920	+48.0	+48.4	-0.4		
50.0	0.920	50.4	0.920	+48.0	+48.4	-0.4		
75.0	0.920	75.3	0.920	+48.0	+48.4	-0.4		
90.0	0.920	81.5 ⁽¹⁾	0.920	+48.0	+48.4	-0.4		
100.0	0.920	81.5 ⁽¹⁾	0.920	+48.0	+48.4	-0.4		
50.0	0.920	50.4	0.920	+48.0	+48.4	-0.4		
25.0	0.920	25.5	0.920	+48.0	+48.4	-0.4		
<20.0	0.920	15.7	0.920	+1.0	0.0	+1.0		
35.0	0.920	35.4	0.920	+48.4	+48.4	0.0		
35.0	0.950	35.2	0.950	+22.7	+22.8	-0.1		
35.0	1.000	34.8	1.000	+1.0	0.0	+1.0		

Test results are offered at the tables below.

⁽¹⁾ Since the working mode is reactive power priority, the active power cannot reach the expected value due to current limitation.

Test results are represented at diagrams below.

Supplementary information: p.u. values for P and S are given in reference to Sn, p.u. values for Q are given in reference to P_D.

React	Reactive power injection in relation with the Voltage (Capacitive)								
P/Pn setpoint (%Pn)	U setpoint (p.u.)	P measured (%Sn)	V measured (p.u.)	Q measured (%P _D)	Q desired (%P _D)	ΔQ (p.u.) (±2.2%P _D)			
<20.0	1.080	15.4	1.080	-1.3	0.0	-1.3			
25.0	1.080	25.2	1.080	-1.3	0.0	-1.3			
35.0	1.080	35.3	1.080	-47.0	-48.4	+1.4			
50.0	1.080	50.2	1.080	-47.0	-48.4	+1.4			
75.0	1.080	75.1	1.080	-47.0	-48.4	+1.4			
90.0	1.080	90.1	1.080	-47.0	-48.4	+1.4			
100.0	1.080	87.4	1.080	-47.0	-48.4	+1.4			
50.0	1.080	50.1	1.080	-47.0	-48.4	+1.4			
25.0	1.080	25.2	1.080	-47.0	-48.4	+1.4			
<20.0	1.080	15.4	1.080	-1.0	0.0	-1.0			
35.0	1.080	35.2	1.080	-47.8	-48.4	+0.6			
35.0	1.050	35.5	1.050	-23.1	-22.8	-0.3			
35.0	1.000	36.0	1.000	-0.4	0.0	-0.4			

⁽¹⁾ Since the working mode is reactive power priority, the active power cannot reach the expected value due to current limitation.

Test results are represented at diagrams below.

Supplementary information: p.u. values for P and S are given in reference to Sn, p.u. values for Q are given in reference to P_D.

Member of the SGS Group (SGS SA) TRF No. EEC_ EN 50549-1 B

4.4.2.3 Static accuracy

The test has been performed according to the clause 4.7.2.3.3 of the standard.

The dynamics of the control shall correspond with a first order filter having a time constant that is configurable in the range of 3 s to 60 s.

The dynamic accuracy shall be in accordance with Figure 15 in the standard with a maximum tolerance of $\pm 5 \ \ensuremath{\%P_D}$ plus a time delay of up to 3 seconds deviating from an ideal first order filter response.

Figure 15 — Example of dynamic control response and tolerance band for a step from Q=0 to Q= $33\%P_D$ with τ =3,33s

Note: Figure 15 – Is from Q=0 to Q= 33% P_D.

The response time is adjustable from 2 s to 60s by settings, which is more stringent than the standard's requirement, from 3s to 60s.

Test results are offered at the tables below.

Setting time = 2 s								
%Pn	Steps	Time measured (s)	Q Measured (%P₀)	Δ Q (%Sn) < ±2.2%P₀				
	$Q = 0 \rightarrow Q = 33\%P_D$ (Inductive)	11.0	+33.0	0.0				
50	$Q = 33\%P_D$ (Inductive) → $Q = 33\%P_D$ (Capacitive)	13.4	-33.0	0.0				
	$Q = -33\%P_D$ (Capacitive) $\rightarrow Q = 0$	11.0	+1.9	+1.9				

	Setting time = 60 s								
%Pn	Steps	Time measured (s)	Q Measured (%P _D)	Δ Q (%Sn) <±2.2%P _D					
50	$Q = 0 \rightarrow Q = 33\%Sn$ (33%P _D)(Inductive)	178.2	+33.0	0.0					
	Q = 33%Sn (33%P _D) (Inductive) → Q = - 33%Sn (33%P _D) (Capacitive)	228.2	-33.0	0.0					
	$Q = -33\%$ Sn (-33% P_D) (Capacitive) $\rightarrow Q = 0$	147.6	+1.8	+1.8					

Test results are represented at diagrams below.

Supplementary information: p.u. values for P and S are given in reference to Sn, p.u. values for Q are given in reference to P_{D} .

4.4.2.4 Power related control mode

The test has been performed according to the clause 4.7.2.3.4 of the standard.

The power related control mode $\cos \phi$ (P) controls the $\cos \phi$ of the output as a function of the active power output.

For power related control modes, a characteristic defined by the manufacturer as follows:

Resulting from a change in active power output a new $\cos \phi$ set point is defined according to the set characteristic. The response to a new $\cos \phi$ set value shall be as fast as technically feasible to allow the change in reactive power to be in synchrony with the change in active power. The new reactive power set value shall be reached at the latest within 10 s after the end value of the active power is reached. The static accuracy of each $\cos \phi$ set point shall be according to 4.7.2.2.

The results are offered in the table below (Note: 10 %Pn has not been measured in the following test):

Setting cos $\phi(P)$ with the standard characteristic curve (20 %P _D to 100 %P _D)								
Active Power setting (%P _D)	Active Power measured (%P _D)	Reactive Power measured (%P _D)	cos φ measured	Desired cos φ	Desired Q (%P _D)	Δ Q (%P _D) (±2.2)	Transient period (<10s)	
20	20.3	-1.0	0.999	1.000	0.0	-1.0	\backslash	
30	30.1	-1.2	0.999	1.000	0.0	-1.2		
40	40.0	-1.3	0.999	1.000	0.0	-1.3		
50	50.0	-1.3	0.999	1.000	0.0	-1.3		
60	60.0	-12.7	0.978	0.980	-12.2	-0.5	3.60	
70	69.9	-20.9	0.958	0.960	-20.4	-0.5	2.40	
80	79.8	-29.5	0.938	0.940	-29.0	-0.5	3.20	
90	89.6	-38.7	0.918	0.920	-38.3	-0.4	1.80	
100	99.4	-48.1	0.900	0.900	-48.4	+0.3	1.20	

Note: The desired Q is calculated from $Q = -\sqrt{(S^2 - P^2)}$.

Test results are represented at diagrams below.

4.4.3. Voltage related active power reduction (Volt-Watt)

SGS

The test has been performed according to the clause 4.7.3 of the standard.

The final implemented logic can be chosen by the manufacturer. Nevertheless, this logic shall not cause steps or oscillations in the output power. The power reduction caused by such a function may not be faster than an equivalent of a time constant tau = 3 s (= 33 %/s at a 100 % change).

The following parameters have been set by the manufacturer for this test:

Test 1 and Test 2 setpoint as following:

Deference	Test 1	Set points	Test 2 Set points		
Reference	Volt.(%Un)	Power(%Pn)	Test 2 Set poin Volt.(%Un) P 90.0% 95.6% 108.7% 115.2%	Power(%Pn)	
V1	90.0%	100.0%	90.0%	100.0%	
V2	95.6%	100.0%	95.6%	100.0%	
V3	104.0%	100.0%	108.7%	100.0%	
V4	110.0%	20.0%	115.2%	20.0%	

Test results are offered at tables below.

Volt-Watt TEST 1							
V setting (p.u.)	V meas. (p.u.)	P desired (p.u.)	P meas. (p.u.)	P deviation (p.u.)	Response time (s)		
0.900	0.900	1.000	0.905 (1)				
0.950	0.950	1.000	0.956 (1)				
1.000	1.000	1.000	1.006	+0.006			
1.020	1.020	1.000	1.005	+0.005			
1.040	1.040	1.000	1.003	+0.003			
1.050	1.050	0.867	0.863	-0.004	0.4		
1.060	1.060	0.733	0.732	-0.001	0.4		
1.070	1.070	0.600	0.603	+0.003	0.4		
1.100	1.100	0.200	0.201	+0.001	0.8		

Volt-Watt TEST 2							
V setting (p.u.)	V meas. (p.u.)	P desired (p.u.)	P meas. (p.u.)	P deviation (p.u.)	Response time (s)		
0.900	0.900	1.000	0.905 (1)				
0.950	0.950	1.000	0.955 (1)				
1.000	1.000	1.000	1.005	+0.005			
1.020	1.020	1.000	1.004	+0.004			
1.040	1.040	1.000	1.001	+0.001			
1.050	1.050	1.000	1.001	+0.001			
1.060	1.060	1.000	0.999	-0.001			
1.070	1.070	1.000	0.999	-0.001			
1.100	1.100	0.840	0.837	-0.003	0.8		
1.120	1.120	0.594	0.596	+0.002	0.8		
1.152	1.152	0.200	0.204	+0.004	0.8		

⁽¹⁾ The active power cannot reach the expected value due to current limitation.

Test results are represented at diagrams below.

4.4.4. Short circuit current requirements on generating plants

The tests of the chapter 4.7.4 of the standard describe the required short circuit current contribution for generating plants taking into account the connection technology of the generating modules.

These tests are considered optional for Type A and Type B generating units connected to LV distribution grids, thus they have not been performed.

4.4.4.1 Generating plant with non-synchronous generating technology

4.4.4.1.1 Voltage support during faults and voltage steps

The requirements are stated in clause 4.7.4.2.1 of the standard.

The EUT is classified as Type A and B. This is no voltage support during faults and voltage steps.

4.4.4.1.2 Zero current mode for converter connected generating technology

The requirements are stated in clause 4.7.4.2.2 of the standard.

The EUT is classified as Type A and B. Refer to Section 4.2.2 and 4.2.3 of this report. During UVRT and OVRT, the EUT is always work at zero current mode.

4.4.4.1.3 Induction generator based units

The requirements are stated in clause 4.7.4.2.3 of the standard.

In general, no voltage support during faults and voltage steps is required from generating plants connected in LV distribution networks as the additional reactive current is expected to interfere with grid protection equipment. This clause is not applicable.

4.4.4.2 Generating plant with synchronous generating technology - Synchronous generator based units

The requirements are stated in clause 4.7.4.3 of the standard.

The EUT is with non-synchronous generating technology. This clause is not applicable.

4.5. EMC AND POWER QUALITY

As required in clause 4.8 of the standard, all electric and electronic equipment to be installed under the scope of this standard shall be in compliance with relative standards for Electromagnetic Compatibility.

The compliances with these requirements are stated in the following EMC test reports:

EN IEC 61000-6-3: 2021; EN IEC 61000-6-1: 2019: Test Report no. GZCR231100125005C02, issued by SGS-SCTS Standards Technical Services Co., Ltd. Guangzhou Branch, on May 28 of 2024. NVLAP LAB CODE 200611-0.

Note: Aside of EMC evidence of compliances, the harmonic and flicker content has been measured just to provide further information of the tested unit, and the results are stated in the following items 4.5.1 and 4.5.2 of the report.

4.5.1. Harmonic emissions

The test has been performed according to the clause 4.8 of the standard EN 61000-3-2:2011-05.

Below are the measured values of current harmonics.

Pn (%)							
(////	33	66	100	(A)			
Nr./Order	I _h (A)	I _h (A)	I _h (A)	(~)			
2	0.021	0.038	0.059	1.080			
3	0.041	0.133	0.230	2.300			
4	0.009	0.015	0.024	0.430			
5	0.018	0.075	0.127	1.140			
6	0.006	0.011	0.018	0.300			
7	0.014	0.067	0.101	0.770			
8	0.005	0.009	0.014	1.000			
9	0.018	0.051	0.079	0.400			
10	0.004	0.007	0.011	0.800			
11	0.023	0.032	0.049	0.330			
12	0.003	0.005	0.010	0.667			
13	0.021	0.022	0.027	0.210			
14	0.003	0.006	0.009	0.571			
15	0.013	0.010	0.011	1.000			
16	0.003	0.006	0.008	0.500			
17	0.005	0.003	0.003	0.882			
18	0.003	0.005	0.007	0.444			
19	0.003	0.008	0.009	0.789			
20	0.003	0.004	0.006	0.400			
21	0.004	0.007	0.009	0.714			
22	0.003	0.003	0.005	0.364			
23	0.006	0.004	0.006	0.652			
24	0.002	0.003	0.004	0.333			
25	0.008	0.002	0.002	0.600			
26	0.002	0.003	0.003	0.308			
27	0.006	0.002	0.002	0.556			
28	0.002	0.004	0.003	0.286			
29	0.004	0.004	0.003	0.517			
30	0.002	0.002	0.002	0.267			
31	0.001	0.003	0.002	0.484			
32	0.003	0.002	0.003	0.250			
33	0.001	0.003	0.003	0.455			
34	0.002	0.003	0.004	0.235			
35	0.002	0.003	0.005	0.429			
36	0.001	0.003	0.003	0.222			
37	0.003	0.003	0.004	0.405			
38	0.001	0.003	0.002	0.211			
39	0.003	0.004	0.004	0.385			
40	0.001	0.002	0.003	0.200			
THD (%)	5.900	8.073	8.765	13.000			
PWHD(%)	8.626	4.561	3.611	22.000			

Test results are represented at diagrams below.

4.5.2. Flicker and voltage fluctuations

The test has been performed according to the clause 4.8 of the standard.

The measurements of voltage fluctuations have been measured at 33%, 66% and 100% of the nominal power value of the inverter according to the standard IEC 61000-3-3:2017.

The flicker test result as following:

33 %Pn					
ltem	Limit	L-N			
P _{ST}	≤ 1.000	0.133			
PLT	≤ 0.650	0.058			
dc [%]	≤ 3.300	0.000			
dmax [%]	4.000	0.000			

66 %Pn					
Item	Limit	L-N			
P _{ST}	≤ 1.000	0.015			
PLT	≤ 0.650	0.014			
dc [%]	≤ 3.300	0.000			
dmax [%]	4.000	0.000			

100 %Pn					
Item	Limit	L-N			
Pst	≤ 1.000	0.017			
PLT	≤ 0.650	0.017			
dc [%]	≤ 3.300	0.000			
dmax [%]	4.000	0.000			

As it can be seen in the next screenshots, this test has 12 steps. The values took of Pst, Plt, dc and dmax are the most unfavorable of the 12 steps.

Test results are represented at diagrams below.

4.6. INTERFACE PROTECTION

4.6.1. Requirements on voltage and frequency protection

The test has been performed according to the clause 4.9.3 of the standard. The minimum required accuracy for protection is:

- For frequency measurement ±0.05 Hz;
- For voltage measurement ±1 %Un.
- The reset time shall be ≤50 ms.
- The interface protection relay shall not conduct continuous starting and disengaging operations of the interface protection relay. Therefore, a reasonable reset ratio shall be implemented which shall not be zero but be below 2 % of nominal value for voltage and below 0.2 Hz for frequency.

4.6.1.1 Undervoltage protection

Undervoltage protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows.

Undervoltage threshold stage 1 [27 <]:

- Threshold (0.2 1.0) Un adjustable by steps of 0.01 Un
- Operate time (0.1 100) s adjustable in steps of 0.1 s

Undervoltage threshold stage 2 [27 <<]:

- Threshold (0.2 1.0) Un adjustable by steps of 0.01 Un
- Operate time (0.1 5) s adjustable in steps of 0.05 s

The undervoltage threshold stage 2 is not applicable for micro-generating plants.

The following definitions apply to the test to verify the clause:

Undervoltage	Test No.	Voltage setting (p.u.)	Voltage meas. (p.u.)	Voltage deviation (p.u.)	Trip time setting (s)	Trip time meas. (s)	Trip time deviation (s)
Stage 1 [27 <]	1	0.200	0.204	+0.004	100.000	99.900	-0.100
	2	1.000	1.000	+0.000	0.100	0.043	-0.057
Stage 2 [27 <<]	3	0.200	0.200	0.000	5.000	4.980	-0.020
	4	1.000	1.002	+0.002	0.100	0.027	-0.073

Test results are represented at diagrams below.

4.6.1.2 Overvoltage protection

Overvoltage protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows.

Overvoltage threshold stage 1 [59 >]:

- Threshold (1.0 1.2) Un adjustable by steps of 0.01 Un
- Operate time (0.1 100) s adjustable in steps of 0.1 s

Overvoltage threshold stage 2 [59 > >]:

- Threshold (1.0 1.3) Un adjustable by steps of 0.01 Un
- Operate time (0.1 5) s adjustable in steps of 0.05 s

The following definitions apply to the test to verify the clause:

Overvoltage	Test No.	Voltage setting (p.u.)	Voltage meas. (p.u.)	Voltage deviation (p.u.)	Trip time setting (s)	Trip time meas. (s)	Trip time deviation (s)
Stage 1 [59 >]:	1	1.000	1.000	0.000	100.000	99.900	-0.100
	2	1.200	1.200	0.000	0.100	0.026	-0.074
Stage 2 [59 > >]	3	1.000	1.000	0.000	5.000	4.980	-0.020
	4	1.300	1.300	0.000	0.100	0.012	-0.088

Test results are represented at diagrams below.

4.6.1.3 Overvoltage 10 min mean protection

The function shall be based on the calculation of the square root of the arithmetic mean of the squared input values over 10 min. The calculation of a new 10 min value at least every 3 s is sufficient, which is then to be compared with the threshold value.

- Threshold (1.0 1.15) Un adjustable by steps of 0.01 Un
- Start time ≤ 3s not adjustable
- Time delay setting = 0 ms

SGS

The following definitions apply to the test to verify the clause:

Test No.	Voltage setting (p.u.)	Voltage meas. (p.u.)	Voltage deviation (p.u.)	Trip time meas. (s)	Trip time limited	
1	1.000	1.000	0.000	2.1	≤ 3.0s	
2	1.150	1.150	0.000	1.6	≤ 3.0s	

Remark: The trip voltage accuracy tolerance is ±0.01 Un.

Test results are represented at diagrams below.

4.6.1.4 Underfrequency protection

Underfrequency protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows.

Underfrequency threshold stage 1 [81 <]:

- Threshold (47.0 50.0) Hz adjustment by steps of 0.1 Hz
- Operate time (0.1 100) s adjustable in steps of 0.1 s

Underfrequency threshold stage 2 [81 <<]:

- Threshold (47.0 50.0) Hz adjustment by steps of 0.1 Hz
- Operate time (0.1 5) s adjustable in steps of 0.05 s

In order to use narrow frequency thresholds for islanding detection (see 4.9.3.3) it may be required to have the ability to activate and deactivate a stage by an external signal.

The frequency protection shall function correctly in the input voltage range between 20 % Un and 120 % Un and shall be inhibited for input voltages of less than 20 % Un.

Under 0.2 Un the frequency protection is inhibited. Disconnection may only happen based on undervoltage protection.

Under frequency	Test No.	Frequency setting (Hz)	Frequency meas. (Hz)	Frequency deviation (Hz)	Trip time setting (s)	Trip time meas. (s)	Trip time deviation (s)
Stage 1	1	47.00	47.00	0.00	100.000	99.9	-0.100
[81 <]	2	50.00	50.00	0.00	0.100	0.040	-0.060
Stage 2	3	47.00	47.00	0.00	5.000	4.960	-0.040
[81 < <]	4	50.00	50.00	0.00	0.100	0.039	-0.061

The following definitions apply to the test to verify the clause:

Voltage protection threshold setting (p.u.)	Test No.	Frequency setting (Hz)	Voltage setting (p.u.)	Trip value meas. (Hz)	Trip time setting (s)	Trip time meas. (s)	Trip time deviation (s)
	5	47.00	0.210	47.00	5.000	4.940	-0.060
	6	47.00	1.190	47.00	5.000	4.980	-0.020
0 19 9 1 22	7	47.00	0.190		Not protected		
0.10 & 1.22		47.00	0.170	47.00	5.000	4.920	-0.080
	8	47.00	1.210		Not protected		
		47.00	1.230	47.00	5.000	4.980	-0.020

Test results are represented at diagrams below.

4.6.1.5 Overfrequency protection

Overfrequency protection may be implemented with two completely independent protection thresholds, each one able to be activated or not. The standard adjustment ranges are as follows.

Overfrequency threshold stage 1 [81 >]:

- Threshold (50.0 52.0) Hz adjustment by steps of 0.1 Hz
- Operate time (0.1 100) s adjustable in steps of 0.1 s

Overfrequency threshold stage 2 [81 > >]:

- Threshold (50.0 52.0) Hz adjustment by steps of 0.1 Hz
- Operate time (0.1 5) s adjustable in steps of 0.05 s

In order to use narrow frequency thresholds for islanding detection (see 4.9.3.3) it may be required to have the ability to activate and deactivate a stage by an external signal.

The frequency protection shall function correctly in the input voltage range between 20 %Un and 120 %Un and shall be inhibited for input voltages of less than 20 %Un.

The following definitions apply to the test to verify the clause:

Over frequency	Test No.	Frequency setting (Hz)	Frequency meas. (Hz)	Frequency deviation (Hz)	Trip time setting (s)	Trip time meas. (s)	Trip time deviation (s)
Stage 1	1	50.00	50.00	0.00	100.000	99.900	-0.100
[81 >]	2	52.00	52.00	0.00	0.100	0.034	-0.066
Stage 2	3	50.00	50.00	0.00	5.000	4.980	-0.020
[81 > >]	4	52.00	52.00	0.00	0.100	0.048	-0.052

Voltage protection threshold setting (p.u.)	Test No.	Frequency setting (Hz)	Voltage setting (p.u.)	Trip value meas. (Hz)	Trip time setting (s)	Trip time meas. (s)	Trip time deviation (s)
	5	52.00	0.210	52.00	5.000	4.980	-0.020
	6	52.00	1.190	52.00	5.000	4.980	-0.020
0.21 8 1 22	7	52.00	0.190		Not protected		
0.21 & 1.22		52.00	0.170	52.00	5.000	4.960	-0.040
	8	52.00	1.210		Not protected		
	-	52.00	1.230	52.00	5.000	4.980	-0.020

Test results are represented at diagrams below.

4.6.2. Means to detect island situation

SGS

The test has been performed according to the clause 4.9.4 of the standard.

This protection device is also able to detect islanded situations and disconnect the equipment from the grid. Active methods tested with a resonant circuit used for detecting islanding situations.

The compliances with these requirements are stated in the according to EN 62116. An EUT is considered to comply with the requirements for islanding protection when each case of recorded run-on time is less than 2 s or meets the requirements of local codes.

	Table: tested condition and run-on time										
No.	P _{EUT} (% of EUT rating)	Reactive load (% of normial)	P _{AC}	Q _{AC}	Run-on time (ms)	Р _{ЕՍТ} (KW)	Actual Q _f	V _{DC} (Vd.c.)	Which load is selected to be adjusted (R or L)		
	Test condtion A										
1	100	100	0	0	534	0.76	1.00	45			
2	100	100	-5	-5	159	0.72	1.03	45	R/L		
3	100	100	-5	0	454	0.72	1.05	45	R		
4	100	100	-5	+5	473	0.72	1.08	45	R/L		
5	100	100	0	-5	409	0.75	0.98	45	L		
6	100	100	0	+5	353	0.76	1.03	45	L		
7	100	100	+5	-5	406	0.79	0.94	45	R/L		
8	100	100	+5	0	374	0.79	0.96	45	R		
9	100	100	+5	+5	522	0.79	0.99	45	R/L		
10	100	100	-10	+10					R/L		
11	100	100	-5	+10	-				R/L		
12	100	100	0	+10					L		
13	100	100	+10	+10					R/L		
14	100	100	+10	+5					R/L		
15	100	100	+10	0					R		
16	100	100	+10	-5					R/L		
17	100	100	+10	-10					R/L		
18	100	100	+5	-10					R/L		
19	100	100	+5	10					R/L		
20	100	100	0	-10					L		
21	100	100	-5	-10					R/L		
22	100	100	-10	-10					R/L		
23	100	100	-10	-5					R/L		
24	100	100	-10	0					R/L		
25	100	100	-10	+5					R/L		
	1	F	1		Test co	ndtion B	1		ſ		
10	66	66	0	0	493	0.50	1.00	41			
11	66	66	0	-5	451	0.50	0.98	41	L		
12	66	66	0	-4	466	0.50	0.99	41	L		
13	66	66	0	-3	517	0.50	0.99	41	L		
14	66	66	0	-2	450	0.50	0.99	41	L		
15	66	66	0	-1	446	0.50	1.00	41	L L		
16	66	66	0	1	458	0.50	1.01	41			
17	66	66	0	2	502	0.50	1.03	41	L L		
18	66	66	0	3	299	0.50	1.03	41			
19	66	66	0	4	427	0.50	1.04	41			
20	66	66	0	5	126	0.50	1.04	41			
21	66	66	0	6					l L		

Table: tested condition and run-on time Reactiv PEUT (% Run-on Which load is VDC e load P_{AC} Q_{AC} PEUT Actual of EUT selected to be No. time (% of (KW) Qf (Vd.c.) rating) (ms) adjusted (R or L) normial) Test condition C 1.00 22 33 33 0 0 492 0.25 35 --23 33 33 0 -5 421 0.25 0.97 35 L 24 33 33 0 -4 632 0.25 0.98 35 L -3 25 33 33 0 534 0.25 0.99 35 L 26 33 33 -2 0.25 35 0 464 0.99 L 27 33 33 0 -1 430 0.25 0.99 35 L 28 33 33 0 1 170 0.25 1.07 35 L 29 33 33 0 2 109 0.25 1.07 35 L 30 33 33 0 3 137 0.25 1.08 35 L 31 33 33 0 4 155 0.25 1.08 35 L 32 33 33 0 5 152 0.25 1.08 35 L Remark:

For test condition A:

If any of the recorded run-on times are longer than the one recorded for the rated balance condition, then the non-shaded parameter combinations also require testing.

For test condition B and C:

If run-on times are still increasing at the 95 % or 105 % points, additional 1 % increments are taken until run-on times begin decreasing.

4.6.3. Digital input to the interface protection

The test has been performed according to the clause 4.9.5 of the standard.

The interface protection shall have at least two configurable digital inputs, EUT used active methods tested with a resonant circuit and ROCOF to comply to the clause.

4.7. CONNECTION AND STARTING TO GENERATE ELECTRICAL POWER

The test has been performed according to the clause 4.10 of the standard.

4.7.1. Automatic reconnection after tripping

The test has been performed according to the clause 4.10.2 of the standard.

The frequency range, the voltage range, the observation time shall be adjustable in the range according to Table 3 column 2. If no settings are specified by the DSO and the responsible party, the default settings for the reconnection after tripping of the interface protection are according to Table 3 column 3.

Parameter	Range	Default setting
Lower frequency	47,0Hz – 50,0Hz	49,5Hz
Upper frequency	50,0Hz – 52,0Hz	50,2Hz
Lower voltage	50% – 100%U _n	85 % Un
Upper voltage	100% – 120% U _n	110 % U _n
Observation time	10s – 600s	60s
Active power increase gradient	6% – 3000%/min	10%/min

Table 3 — Automatic reconnection after tripping

The following definitions apply to the test to verify the clause:

Disconnection Setting		Reconnecti Setting	Reconnection Setting		Meas. Reconnection time (s)	Setting gradient (%Pn/min)	Meas. gradient (%Pn/min)
U= 115 %Un	Yes	U = 110 %Un	Yes	60.0	75.6	6.0	4.88
U = 84 %Un	Yes	U = 85 %Un	Yes	10.0	13.4	10.0	7.79
f = 52.00 Hz	Yes	f = 50.20 Hz	Yes	600.0	600.9	3000.0	1332.00 ⁽¹⁾
f = 47.50 Hz	Yes	f = 49.50 Hz	Yes	100.0	109.8	10.0	7.64

⁽¹⁾ This is the maximum gradient which can be measured for the setting of 3000.0 %Pn/min.

Note: See section 4.7.2 for the test result graph.

4.7.2. Starting to generate electrical power

The test has been performed according to the clause 4.10.3 of the standard.

The frequency range, the voltage range, the observation time shall be adjustable in the range according to Table 4 column 2. If no settings are specified by the DSO and the responsible party, the default settings for connection or starting to generate electrical power due to normal operational startup or activity are according to Table 4 column 3.

Parameter	Range	Default setting
Lower frequency	47,0Hz – 50,0Hz	49,5Hz
Upper frequency	50,0Hz – 52,0Hz	50,1Hz
Lower voltage	50% – 100% U _n	85 % Un
Upper voltage	100% – 120% U _n	110 % Un
Observation time	10s – 600s	60s
Active power increase gradient	6% – 3000%/min	disabled

Table 4 — Starting to generate electrical power

The following definitions apply to the test to verify the clause:

Connection		Setting Connection time (s)	Meas. Connection time (s)	Setting gradient (%Pn/min)	Meas. gradient (%Pn/min)
U < 110 %Un	Yes	60.0	75.4	6.0	4.86
85 % < U	Yes	10.0	13.6	10.0	7.79
f < 50.10 Hz	Yes	600.0	601.1	3000.0	1336.00 (1)
49.50 < f	Yes	100.0	115.8	10.0	7.70

⁽¹⁾ This is the maximum gradient which can be measured for the setting of 3000.0 %Pn/min.

Test results are represented at diagrams below.

4.7.3. Synchronization

The requirements are from clause 4.10.4 of the standard. Synchronizing a generating plant/unit with the distribution network shall be fully automatic.

The EUT is fully automatic in the connection to the distribution network.

4.8. CEASING AND REDUCTION OF ACTIVE POWER ON SET POINT

4.8.1. Ceasing active power

The test has been performed according to the clause 4.11.1 of the standard.

Generating plants with a maximum capacity of 0.8 kW or more shall be equipped with a logic interface (input port) in order to cease active power output within 5 seconds following an instruction being received at the input port. If required by the DSO and the responsible party, this includes remote operation.

4.8.2. Reduction of active power on set point

Test requirements according to the clause 4.11.2 of the standard.

Active Power step	Setpoint value		Setpoint value Actual value		Devi <±5	Gradient 0.66%Pn/s to 0.33%Pn/s	
(/orn)	(kW)	(%Pn)	(kW)	(%P _n)	(kW)	(%P _n)	(%Pn/s)
100	0.800	100	0.800	100.0	0.000	0.0	
90	0.720	90	0.721	90.1	+0.001	+0.1	-0.48
80	0.640	80	0.642	80.2	+0.002	+0.2	-0.52
70	0.560	70	0.563	70.4	+0.003	+0.4	-0.50
60	0.480	60	0.483	60.4	+0.003	+0.4	-0.46
50	0.400	50	0.404	50.5	+0.004	+0.5	-0.43
40	0.320	40	0.324	40.5	+0.004	+0.5	-0.38
30	0.240	30	0.244	30.5	+0.004	+0.5	-0.45
20	0.160	20	0.164	20.5	+0.004	+0.5	-0.51
10	0.080	10	0.078	9.8	-0.002	-0.2	-0.47
0	0.000	0	0.000	0.0	0.000	0.0	-0.53

Test results are represented at diagrams below.

4.9. REQUIREMENTS REGARDING SINGLE FAULT TOLERANCE OF INTERFACE PROTECTION SYSTEM AND INTERFACE SWITCH

The requeriments are from clause 4.3.2 and 4.13 of the standard.

1) The compliances with the requirements of clause 4.3.2 are met with the following structure:

The output is switched off redundantly by the high-power switching bridge and relays, model: HF115F/012-2HS4AF, rated: 8A/250Vac.

2) The compliances with the requirements of clause 4.13 are stated in section 4.4 and 4.4.4 of the following test report:

IEC 62109-1: 2010 and IEC 62109-2: 2011: Test Report no. GZES240100138501 and GZES240100138502, issued by SGS-SCTS Standards Technical Services Co., Ltd. Guangzhou Branch, on February 19 of 2024. GAC ATL 0032.

5. PICTURES

Internal view

6. ELECTRICAL SCHEME

-----End of Report-----