0			DAG	1	Report No.: DACE240718006RL004
	DAE	R	F TEST		DAE
	HUIZHOU FORY	Όι	J OPTOELE L [.]	CTRONICS TEC	CHNOLOGY CO.,
	Product Name	: Pl	hotovoltaic mag	energy storage chine	DC integrated
C			Test Mode	l(s).: DA802	
	Report Reference No.	:	DACE240718006	RL004	
V	Applicant's Name	:	HUIZHOU FORY	OU OPTOELECTRONICS	S TECHNOLOGY CO., LTD.
	Address	:	Building No.6, Fo Road,Dongjiang	oryou Industrial Park Area High-tech Industry Park, H	B,No.1 North Shangxia uizhou, Guangdong,China.
	Testing Laboratory	:	Shenzhen DACE	Testing Technology Co., L	td.
	Address	:	102, Building H1, Tangtou Connuni Guangdong, Chir	& 1/F., Building H, Hongfa ty, Shiyan Subdistrict, Bao na	Science & Technology Park, 'an District, Shenzhen,
	Test Specification Standard	:	ETSI EN 301 893	V2.1.1 (2017-05)	
	Date of Receipt	:	July 18, 2024		
C	Date of Test	:	July 18, 2024 to .	luly 29, 2024	
	Data of Issue	1	July 29, 2024		
	Result	2	Pass		
11	Note: This report shall not be r Testing Technology Co., Ltd. T Co., Ltd. personnel only, and s report only apply to the tested	eproo his d hall t samp	duced except in full ocument may be al be noted in the revi ble	, without the written appro tered or revised by Shenzl sion section of the docume	val of Shenzhen DACE hen DACE Testing Technology ent. The test results in the
	.6			6	4
	102, Building H1, & 1/F., Building H, Hongfa So Web: http://www.dace-lab.com	cience 8 Tel:	Technology Park, Tangtou C +86-755-23010613	onnunity, Shiyan Subdistrict, Bao'an Dis E-mail: service@dace-lab.	trict, Shenzhen, Guangdong, China com Page 1 of 98

Ì

3

Report No.: DACE240718006RL004

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	DACE240718006RL004	July 29, 2024
	- xe	6	
8	DP I		1
		25	2/6

NOTE1:

DΔC

240

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with all relevant EU Directives. DAG

NOTE2:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:

Supervised by: Sofone &

TP

ved by:

chen

en / Manager

Ben Tang

Ben Tang / Test Engineer

Stone Yin / Project Engineer

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 Page 2 of 98 E-mail: service@dace-lab.com

CONTENTS

D	\C	V1.0 Report No.: DACE24071800	6RL004
		CONTENTS	
1	TES	T SUMMARY	5
	1.1	TEST STANDARDS	5
	1.2	SUMMARY OF TEST RESULT	5
2	GEN	IERAL INFORMATION	6
	2.1	CLIENT INFORMATION	6
	2.2	DESCRIPTION OF DEVICE (EUT)	6
	2.3	DESCRIPTION OF TEST MODES	6 7
	2.4	EQUIPMENTS USED DURING THE TEST	
	2.6	STATEMENT OF THE MEASUREMENT UNCERTAINTY	8
3	EVA	LUATION RESULTS (EVALUATION)	9
	31		٩
4	RAD	NU SPECTRUM MATTER TEST RESULTS (RF)	9
	4.1		9
		4.1.1 E.U.I. Operation:	10
		4.1.2 Test Setup Diagram	1010 10
	12		10
	4.2	4.2.1 FUT Operation:	11
		4.2.1 Electric operation	12
		4.2.3 Test Data:	
	4.3	RF OUTPUT POWER, TRANSMIT POWER CONTROL (TPC)	13
		4.3.1 E.U.T. Operation:	17
		4.3.2 Test Setup Diagram:	17
		4.3.3 Test Data:	17
	4.4	Power Density	18
		4.4.1 E.U.T. Operation:	18
		4.4.2 Test Setup Diagram:	19
		4.4.3 Test Data:	19
	4.5	TRANSMITTER UNWANTED EMISSIONS WITHIN THE 5 GHZ RLAN BANDS	20
		4.5.1 E.U.I. Operation:	21
		4.5.2 Test Setup Diagram:	۲۷۲ 21
	16	4.5.5 TEST Data.	······ 21
	4.0	4.6.1 FUT Operation:	24
		4.6.2 Test Setup Diagram:	24
		4.6.3 Test Data:	
	4.7	RECEIVER SPURIOUS EMISSIONS, CONDUCTED	
		4.7.1 E.U.T. Operation:	26
		4.7.2 Test Setup Diagram:	27
		4.7.3 Test Data:	27
	4.8	ADAPTIVITY (CHANNEL ACCESS MECHANISM)	28
		4.8.1 E.U.T. Operation:	29
		4.8.2 Test Setup Diagram:	30
		4.8.3 Iest Data:	30
		9.4/E. Building H. Hanafa Sejange & Technology Dark, Tenetay Consumity, Shiyan Subdistrict, Baskan District, Shanahan, Oyangdang, China	

25	246	ade
DA	V1.0	Report No.: DACE240718006RL004
	4.9 RECEIVER BLOCKING	
	4.9.1 E.U.I. Operation: 4.9.2 Test Setup Diagram:	
	4.9.3 Test Data:	
5	TEST SETUP PHOTOS	错误!未定义书签。
6	PHOTOS OF THE EUT	
7	1. NOMINAL CENTRE FREQUENCIES	
8	2. 99% OCCUPIED BANDWIDTH	
9	3. RF OUTPUT POWER	
10	4. POWER SPECTRAL DENSITY	
12	6. TRANSMITTER EMISSIONS WITHIN BANDS	
13	7. RECEIVER SPURIOUS EMISSIONS	
		200

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

NC

TEST SUMMARY 1

1.1 Test Standards

DΔG

)DE

The tests were performed according to following standards:

ETSI EN 301 893 V2.1.1 (2017-05): 5 GHz RLAN; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU

1.2 Summary of Test Result

Item	Standard	Method	Requirement V	Result
Nominal Centre frequencies	ETSI EN 301 893 V2.1.1 (2017-05)	Clause 5.4.2.2.1.2	Clause 4.2.1	Pass
Nominal Channel Bandwidth and Occupied Channel Bandwidth	ETSI EN 301 893 V2.1.1 (2017-05)	Clause 5.4.3.2.1	Clause 4.2.2	Pass
RF output power, Transmit Power Control (TPC)	ETSI EN 301 893 V2.1.1 (2017-05)	Clause 5.4.4.2.1.1.4 Clause 5.4.4.2.1.2.4	Clause 4.2.3	Pass
Power Density	ETSI EN 301 893 V2.1.1 (2017-05)		Clause 4.2.3	Pass
Transmitter unwanted emissions within the 5 GHz RLAN bands	ETSI EN 301 893 V2.1.1 (2017-05)	Clause 5.4.6.2.1.2	Clause 4.2.4.2	Pass
Transmitter unwanted emissions outside the 5 GHz RLAN bands, conducted	ETSI EN 301 893 V2.1.1 (2017-05)	Clause 5.4.5.2.1	Clause 4.2.4.1	Pass
Receiver spurious emissions, conducted	ETSI EN 301 893 V2.1.1 (2017-05)	Clause 5.4.7.2.1	Clause 4.2.5	Pass
Adaptivity (Channel Access Mechanism)	ETSI EN 301 893 V2.1.1 (2017-05)	Clause 5.4.9.3.2	Clause 4.2.7.3.2 Clause 4.2.7.3.3	Pass
Receiver Blocking	ETSI EN 301 893 V2.1.1 (2017-05)	Clause 5.4.10.2.1	Clause 4.2.8	Pass
User Access Restrictions	ETSI EN 301 893 V2.1.1 (2017-05)	DAC	Clause 4.2.9.2	Pass

)De

)AC

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

NC

NE

	JP-	24
ΔC ——	V1.0	Report No.: DACE240718006RL
GENERAL 1 Client Informa		
Applicant's Name Address	 HUIZHOU FORYOU OPTOE Building No.6, Foryou Indust Road,Dongjiang High-tech In 	ELECTRONICS TECHNOLOGY CO., LTD. rial Park Area B,No.1 North Shangxia dustry Park, Huizhou, Guangdong,China.
Manufacturer	: HUIZHOU FORYOU OPTOE	ELECTRONICS TECHNOLOGY CO., LTD.
Address 2 Description of	: Building No.6, Foryou Indust Road,Dongjiang High-tech In f Device (EUT)	rial Park Area B,No.1 North Shangxia dustry Park, Huizhou, Guangdong,China.
Product Name:	Photovoltaic energy storage DC	; integrated machine
Model/Type referer	nce: DA802	26-
Series Model:	N/A	
Trade Mark:	ADAYO	
Power Supply:	DC60V14*2A	
Operation Frequen	cy: Band 1: 802.11a/n(HT20)/ac(VHT20)/ax 802.11n(HT40)/ac(VHT40)/ax(H	(HE20): 5180MHz to 5240MHz;
6	802.11ac(VHT80)/ax(HE80): 52	10MHz;
Number of Channe	802.11ac(VHT80)/ax(HE80): 52 Band 1: 802.11a/n(HT20)/ac(VHT20)/ax(H 802.11n(HT40)/ac(VHT40)/ax(H 802.11ac(VHT80)/ax(HE80): 1;	(HE20): 4; IE40): 2;
Number of Channe Modulation Type:	802.11ac(VHT80)/ax(HE80): 52 Band 1: 802.11a/n(HT20)/ac(VHT20)/ax(802.11n(HT40)/ac(VHT40)/ax(H 802.11ac(VHT80)/ax(HE80): 1; 802.11a: OFDM(BPSK, QPSK, 802.11a: OFDM (BPSK, QPSK, 802.11ac: OFDM (BPSK, QPSK)	(HE20): 4; IE40): 2; IE40): 2; 16QAM, 64QAM); 16QAM, 64QAM); ; ; 16QAM, 64QAM, 256QAM);
Number of Channe Modulation Type:	802.11ac(VHT80)/ax(HE80): 52 els: Band 1: 802.11a/n(HT20)/ac(VHT20)/ax(H 802.11n(HT40)/ac(VHT40)/ax(H 802.11ac(VHT80)/ax(HE80): 1; 802.11a: OFDM(BPSK, QPSK, 802.11a: OFDM (BPSK, QPSK, 802.11ac: OFDM (BPSK, QPSK, 802.11ac: OFDM (BPSK, QPSK)	(HE20): 4; (HE20): 4; IE40): 2; 16QAM, 64QAM); 16QAM, 64QAM); (, 16QAM, 64QAM, 256QAM);
Number of Channe Modulation Type: Antenna Type: Antenna Gain:	Band 1: 802.11ac(VHT80)/ac(VHT20)/ac(VHT20)/ax 802.11a/n(HT20)/ac(VHT40)/ax(H 802.11n(HT40)/ac(VHT40)/ax(H 802.11ac(VHT80)/ax(HE80): 1; 802.11a: OFDM(BPSK, QPSK, 802.11a: OFDM (BPSK, QPSK, 802.11ac: OFDM (BPSK, QPSK, 802.11ac: OFDM (BPSK, QPSK) Internal 0dBi	(HE20): 4; IE40): 2; IE40): 2; 16QAM, 64QAM); 16QAM, 64QAM); (, 16QAM, 64QAM, 256QAM);
Number of Channe Modulation Type: Antenna Type: Antenna Gain: Hardware Version:	Band 1: 802.11a/n(HT20)/ac(VHT20)/ax 802.11a/n(HT20)/ac(VHT20)/ax 802.11n(HT40)/ac(VHT40)/ax(H 802.11ac(VHT80)/ax(HE80): 1; 802.11ac(VHT80)/ax(HE80): 1; 802.11ac OFDM(BPSK, QPSK, 802.11ac OFDM (BPSK, QPSK, 802.11ac: OFDM (BPSK, QPSK, 802.11ac: OFDM (BPSK, QPSK) Internal 0dBi V1.0	(HE20): 4; (HE20): 4; (E40): 2; 16QAM, 64QAM); 16QAM, 64QAM); (, 16QAM, 64QAM, 256QAM);

2.3 Description of Test Modes

3 Des	cription of Test Modes	- de
No	Title	Description V
TM1	802.11a mode	Keep the EUT in continuously transmitting at 802.11a mode.
TM2	802.11n(HT20) mode	Keep the EUT in continuously transmitting at 802.11n(HT20) mode.
TM3	802.11n(HT40) mode	Keep the EUT in continuously transmitting at 802.11n(HT40) mode.
TM4	802.11ac(VHT20) mode	Keep the EUT in continuously transmitting at 802.11ac(VHT20) mode.
TM5	802.11ac(VHT40) mode	Keep the EUT in continuously transmitting at 802.11ac(VHT40) mode.
TM6	802.11ac(VHT80) mode	Keep the EUT in continuously transmitting at 802.11ac(VHT80)

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

DAG

DAG

.

DAG

DAG

Report No.: DACE240718006RL004

	C	mode.
TM7	Receiving mode (20MHz)	Keep the EUT in receiving mode with 20MHz bandwidth.
TM8	Receiving mode (40MHz)	Keep the EUT in receiving mode with 40MHz bandwidth.
TM9	Receiving mode (80MHz)	Keep the EUT in receiving mode with 80MHz bandwidth.
TM10	Normal mode	Keep the EUT in normal communication with pairing device mode.

DAE

DAG

DAG

DE

2.4 Description of Support Units

DAE

)AC

The EUT was tested as an independent device.

)De

)De

DAG

)De

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

)AC

2.5 Equipments Used During The Test

RF output power, Transmit Power Control (TPC)

Transmitter unwanted emissions outside the 5 GHz RLAN bands, conducted

Nominal Channel Bandwidth and Occupied Channel Bandwidth

Power Density

Transmitter unwanted emissions within the 5 GHz RLAN bands

Receiver spurious emissions, conducted

Adaptivity (Channel Access Mechanism)

Receiver Blocking

Nominal Centre frequencies

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	TACHOY	RTS-01	V2.0.0.0	/	/
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	/	/
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	1	1
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Vector signal generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08
Signal generator	Keysight	N5182A	MY50143455	2023-11-09	2024-11-08
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty
Radio Frequency	±2×10 ⁻⁷
Occupied Bandwidth	±3.63%
RF conducted power	±0.733dB
RF power density	±0.234%
Conducted Spurious emissions	±1.98dB
Duty cycle	±3.1%

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 8 of 98

3 Evaluation Results (Evaluation)

3.1 User Access Restrictions

DΔG

Test Requirement:	The equipment shall be so constructed that settings (hardware and/or software) related to DFS shall not be accessible to the user if changing those settings result in the equipment no longer being compliant with the DFS requirements in clause 4.2.6. The above requirement includes the prevention of indirect access to any setting that impacts DFS. The following is a non-exhaustive list of examples of such indirect access. EXAMPLE 1: The equipment should not allow the user to change the country of operation and/or the operating frequency band if that results in the equipment no longer being compliant with the DFS requirements. EXAMPLE 2: The equipment should not accept software and/or firmware which results in the equipment no longer being compliant with the DFS requirements. EXAMPLE 2: The equipment should not accept software and/or firmware which results in the equipment no longer being compliant with the DFS requirements. EXAMPLE 3: The equipment should not accept software and/or firmware which results in the equipment no longer being compliant with the DFS requirements, e.g.: § software and/or firmware provided by the manufacturer but intended for other regulatory regimes; § modified software and/or firmware where the software and/or firmware is available as open source code; § previous versions of the software and/or firmware (downgrade).
Test Limit:	The equipment shall be so constructed that settings (hardware and/or software) related to DFS shall not be accessible to the user if changing those settings result in the equipment no longer being compliant with the DFS requirements in clause 4.2.6. The above requirement includes the prevention of indirect access to any setting that impacts DFS. The following is a non-exhaustive list of examples of such indirect access. EXAMPLE 1: The equipment should not allow the user to change the country of operation and/or the operating frequency band if that results in the equipment no longer being compliant with the DFS requirements. EXAMPLE 2: The equipment should not accept software and/or firmware which results in the equipment no longer being compliant with the DFS requirements, e.g.: § software and/or firmware provided by the manufacturer but intended for other regulatory regimes; § modified software and/or firmware where the software and/or firmware is available as open source code; § previous versions of the software and/or firmware (downgrade).

4 Radio Spectrum Matter Test Results (RF)

4.1 Nominal Centre frequencies

Test Requirement:	Clause 4.2.1
Test Limit:	The Nominal Centre Frequencies (fc) for a Nominal Channel Bandwidth of 20 MHz are defined by equation (1). See also figure 3. fc = 5 160 + (g × 20) MHz, where $0 \le g \le 9$ or $16 \le g \le 27$ and where g shall be an integer. (1) A maximum offset of the Nominal Centre Frequency of ±200 kHz is permitted. Where the manufacturer decides to make use of this frequency offset, the manufacturer shall declare the actual centre frequencies used by the equipment. See clause 5.4.1, item a). The actual centre frequency for any given channel shall be maintained within the range fc ± 20 ppm. Equipment may have simultaneous transmissions on more than one Operating Channel with a Nominal Channel Bandwidth of 20 MHz.
Test Method:	Clause 5.4.2.2.1.2
Procedure:	This method is an alternative to the above method in case the UUT cannot be
SE	

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China 🌑

Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

<u> </u>	DAG	V	1.0		Repo	ort No.: DACE240718006RL004
			operated in an un-	-modulated mod	e.	6
			Ine UUT shall be	connected to sp	ectrum analyser.	ad to that of the LILIT
			The neak value of	the power onvo	e centre frequency adjuste	ad noted. The span
			shall be reduced a	and the marker n	lope shall be measured at	nov incromont until the
			unner (relative to	the centre freque	=10 dBc point is real	ached This value shall
			be noted as f1	the centre frequ		cheu. This value shall
		. 6	The marker shall t	hen he moved ir	a negative frequency inc	rement until the lower
			(relative to the cer	ntre frequency)	- 10 dBc point is reached	This value shall be
			noted as f2.	ni o noquonoj);		
			The centre freque	ncv is calculated	as (f1 + f2) / 2.	
I	4.1.1 E.U.T. Op	peration:		.,		2h
	Operating Envir	onment:				
C	Temperature:	22.5 °C	Humidity:	49 %	Atmospheric Pressure:	102 kPa

Pretest mode:	TM1, TM2, TM3, TM4, TM5, TM6
Final test mode:	TM1, TM2, TM3, TM4, TM5, TM6

4.1.2 Test Setup Diagram:

V

1

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Page 10 of 98 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)DE

DAG

Report No.: DACE240718006RL004

,AC

DΔC

4.2 Nominal Channel Bandwidth and Occupied Channel Bandwidth

Test Requirement:	Clause 4.2.2
Test Limit:	The Nominal Channel Bandwidth for a single Operating Channel shall be 20 MHz. Alternatively, equipment may implement a lower Nominal Channel Bandwidth with a minimum of 5 MHz, providing they still comply with the Nominal Centre Frequencies defined in clause 4.2.1 (20 MHz raster). The Occupied Channel Bandwidth shall be between 80 % and 100 % of the Nominal Channel Bandwidth . In case of smart antenna systems (devices with multiple transmit chains) each of the transmit chains shall meet this requirement. The Occupied Channel Bandwidth might change with time/payload. During a Channel Occupancy Time (COT), equipment may operate temporarily with an Occupied Channel Bandwidth of less than 80 % of its Nominal Channel Bandwidth with a minimum of 2 MHz.
Test Method:	Clause 5.4.3.2.1
Procedure:	The measurement procedure shall be as follows:
de Dde	 Step 1: Connect the UUT to the spectrum analyser and use the following settings: Centre Frequency: The centre frequency of the channel under test Resolution Bandwidth: 100 kHz Video Bandwidth: 300 kHz Frequency Span: 2 × Nominal Bandwidth (e.g. 40 MHz for a 20 MHz channel) Sweep time: > 1 s; for larger Nominal Bandwidths, the sweep time may be increased until a value where the sweep time has no impact on the RMS value of the signal Detector Mode: RMS Trace Mode: Max Hold Step 2: Wait for the trace to stabilize. Step 3: Make sure that the power envelope is sufficiently above the noise floor of the analyser to avoid the noise signals left and right from the power envelope being taken into account by this measurement. Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT. This value shall be recorded. The measurement described in step 1 to step 3 above shall be repeated in case of simultaneous transmissions in non- adjacent channels.

4.2.1 E.U.T. Operation:

NE

Operating Envir	onment:			1			2
Temperature:	22.5 °C		Humidity:	49 %	Atmospheric Pressure:	102 kPa	V
Pretest mode:		TM1,	TM2, TM3, T	rm4, TM5, TM6	3		
Final test mode:		TM1,	TM2, TM3, 1	FM4, TM5, TM6	3		
		0	20		- XC		

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 11 of 98

Se

4.2.2 Test Setup Diagra	v1.0 m:	Report No.: DACE240718006RL004
4.2.3 Test Data: Please Refer to Appendix	for Details.	DIE
		DIE
E		

DΔC

Report No.: DACE240718006RL004

4.3 RF output power, Transmit Power Control (TPC)

Test Reguirement:	Clause 4.2.3	-			SE	
Test Limit:	General The limits below configuration. The antenna has to be in case of smart In case of multip the total <i>RF Output</i> limits defined in In case of multip total <i>RF Output</i> in table 2 and table	are applicat his means that be taken into antenna sys le (adjacent but Power of table 2 and t le, non-adjac Power in eac ble 3.	ble to the system at the antenna ga account as well tems (devices w or non-adjacent) all channels in the able 3. cent channels op ch of the sub- ba	as a whole and ain of the integra as the additiona th multiple trans channels within nat sub-band sh erating in separ ands shall not ex	d in any possible al or dedicated al (beamforming) ga smit chains). In the same sub-bar nall not exceed the rate sub-bands, the xceed the limits def	ain nd, s fined
J.C.	Limits for RF out TPC is not requi the band 5 150 f For devices with to operate at the the levels given Devices are alloo that shall apply i Table 2: Mean e power level (PH)	put power and red for chann MHz to 5 250 TPC, the RF highest stat in table 2. wed to opera n this case. i.r.p. limits for	nd Power Densit nels whose nomi) MHz. ⁼ output power a ed power level (f ate without TPC. or RF output pow	y at the highest nal bandwidth f nd the Power D P _H) of the TPC See table 2 for er and Power D	power level alls completely with pensity when config range shall not exc the applicable limite Density at the highe	nin ured eed s s
NE	Frequency range (Mean e.i.r.p. limit for PH (dBm)		Mean e.i.r.p (dBm/MHz)	Mean e.i.r.p. density limit (dBm/MHz)		
2r	5 150 to 5 350	with TPC 23	without TPC 20/23 (see note 1)	with TPC e 10	7/10 (see note 2)	-
	5 470 to 5 725	30 (see note 3)	27 (see note 3)	17 (see note 3)	14 (see note 3)	
20	NOTE 1: The a nominal bandw MHz, in which NOTE 2: The a nominal bandw MHz, in which NOTE 3: Slave comply with the	pplicable lim idth falls con case the app pplicable lim idth falls con case the app devices with e limits for the	it is 20 dBm, exc npletely within th licable limit is 23 it is 7 dBm/MHz, npletely within th licable limit is 10 nout a <i>Radar Inte</i> e frequency rang	ept for transmis e band 5 150 N dBm. except for tran e band 5 150 N dBm/MHz. erference Detec e 5 250 MHz to	ssions whose 1Hz to 5 250 smissions whose 1Hz to 5 250 <i>tion</i> function shall 5 350 MHz.	Ŋ
	26			. C.		
DAE	Limit for RF outp ∟) of the TPC ran For devices usin configured to op not exceed the la do not apply. Table 3: Mean e TPC range	out power at nge g TPC, the <i>F</i> erate at the I evels given in .i.r.p. limits fo	the lowest power RF Output Power lowest stated pov n table 3. For dev or RF Output Pov	level (P during a transr ver level (PL) o vices without TF ver at the lowes	nission burst when f the TPC range sh PC, the limits in tab st power level of the	all le 3
	Frequency rang	ge		Mean e.i.r.p. (d	Bm) limit for PL]
	5 250 MHz to 5	350 MHz	6	17		

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

Tel: +86-755-23010613

DΔC

Report No.: DACE240718006RL004

1

NC.	5 470 MHz to 5 725 MHz	24 (see note)
	NOTE: Slave devices without a Rad	ar Interference Detection function shall
V	comply with the limits for the band 5	250 MHz to 5 350 MHz.
Test Method:	Clause 5.4.4.2.1.1.4	
	Clause 5.4.4.2.1.2.4	
Procedure:	• This option is for equipment having	simultaneous transmissions in both sub-bands
	but which cannot be configured to tra	nsmit only in one sub-band.
	Inis procedure first measures the peak to Mean Power ra	eak power in each sub-band separately, then
	to calculate the RF Output Power (e.i	.r.p.) in each sub- band separately using the
	measured values for peak power.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	The test procedure shall be as follow	VS:
	Step 1: Measuring the Total Peak P	ower within the lower sub-band.
	Connect the UUT to the spectrum and Start Fragmentary 5,100 Miles	nalyser and use the following settings:
	- Start Frequency: 5 100 MHz	
	- Stop Frequency, 5 400 Minz	
	- VBW: 3 MHz	
	- Detector Mode: Peak	
	- Trace Mode: Max Hold	
	- Sweep Time: Auto	
	• Ensure that the noise floor of the sp	ectrum analyser is at least 30 dB to 40 dB
	below the peak of the power envelope	e. If this is not possible (e.g. radiated
	which is still slightly above the <i>Nomin</i>	al Channel Bandwidth (e.g. +10 %) to avoid
	the noise floor influencing the measure	rement result
	· When the trace is complete, use the	"Channel Power" function to measure the
	total peak power of the transmissions	within the band 5 150 MHz to 5 350 MHz.
	· For conducted measurements on de	evices with multiple transmit chains, the
	procedure above shall be repeated for	r each of the active transmit chains. The
	results shall be summed to provide th	e total peak power of the transmissions within
	the band 5 150 MHz to 5 350 MHz.	lower within the upper sub hand
	• Change the Start Frequency to 5.42	0 MHz and the Ston Frequency to 5 775 MHz
	• Ensure that the noise floor of the sp	ectrum analyser is at least 30 dB to 40 dB
	below the peak of the power envelope	e. If this is not possible (e.g. radiated
	measurements) reduce the bandwidth	n of the channel power function to a value
	which is still slightly above the Nomin	al Channel Bandwidth (e.g. +10 %) to avoid
	the noise floor influencing the measure	rement result.
	• When the trace is complete, use the	"Channel Power" function to measure the
	For conducted measurements on de	with the band 5 470 MHz to 5 725 MHz.
	procedure above shall be repeated for	r each of the active transmit chains. The
	results shall be summed to provide th	e total peak power of the transmissions within
	the band 5 470 MHz to 5 725 MHz.	24
	Step 3: Calculating the Total Peak	Power.
	Calculate the total peak power by ac	dding the measured value for the band 5 150
	MHz to 5 350 MHz in step 1 to the va	lue measured for the band 5 470 MHz to 5
	725 MHZ IN Step 2.	able to measure the neak nower in both sub
	bands in one measurement in which	case step 1 and step 2 can be combined
	Step 4: Measuring Total Mean Outr	but Power.
	Sample the transmit signal from the	device using a fast power sensor suitable for
	6 GHz. Save the raw samples. The sa	amples shall represent the RMS power of the
	signal.	
	· Settings:	
	- Sample speed: ≥ 10 ⁶ Samples/s.	

Web: http://www.dace-lab.com

Page 14 of 98

Tel: +86-755-23010613

Report No.: DACE240718006RL004

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Report No.: DACE240718006RL004

- Sweep Time: Auto

 \cdot Ensure that the noise floor of the spectrum analyser is at least 30 dB to 40 dB below the peak of the power envelope. If this is not possible (e.g. radiated measurements) reduce the bandwidth of the channel power function to a value which is still slightly above the *Nominal Channel Bandwidth* (e.g. +10 %) to avoid the noise floor influencing the measurement result.

When the trace is complete, use the "Channel Power" function to measure the total peak power of all transmissions with the band 5 150 MHz to 5 350 MHz.
For conducted measurements on devices with multiple transmit chains, the procedure above shall be repeated for each of the active transmit chains. The results shall be summed to provide the total peak power of the transmissions within the band 5 150 MHz to 5 350 MHz.

Step 2: Measuring the Total Peak Power within the upper sub-band.

Change the Start Frequency to 5 420 MHz and the Stop Frequency to 5 775 MHz.
Ensure that the noise floor of the spectrum analyser is at least 30 dB to 40 dB below the peak of the power envelope. If this is not possible (e.g. radiated measurements) reduce the bandwidth of the channel power function to a value which is still slightly above the *Nominal Channel Bandwidth* (e.g. +10 %) to avoid the noise floor influencing the measurement result.

 \cdot When the trace is complete, use the "Channel Power" function to measure the total peak power of all transmissions with the band 5 470 MHz to 5 725 MHz.

 \cdot For conducted measurements on devices with multiple transmit chains, the procedure above shall be repeated for each of the active transmit chains. The results shall be summed to provide the total peak power of the transmissions within the band 5 470 MHz to 5 725 MHz.

Step 3: Calculating the Total Peak Power.

 \cdot Calculate the total peak power by adding the measured value for the band 5 150 MHz to 5 350 MHz in step 1 to the value measured for the band 5 470 MHz to 5 725 MHz in step 2. Modern spectrum analysers may be able to measure the peak power in both sub-bands in one measurement in which case step 1 and step 2 can be combined.

Step 4: Measuring Total Mean Output Power.

 \cdot Sample the transmit signal from the device using a fast power sensor suitable for 6 GHz. Save the raw samples. The samples shall represent the RMS power of the signal.

· Settings:

- Sample speed: $\geq 10^6$ Samples/s.

- Measurement duration: Sufficiently to capture a minimum of 10 transmitter bursts (see clause 5.3.1.1).

· For conducted measurements on devices with one transmit chain:

- Connect the power sensor to the transmit port, sample the transmit signal and store the raw data. Use these stored samples in all following steps.

· For conducted measurements on devices with multiple transmit chains:

- Connect one power sensor to each transmit port for a synchronous measurement on all transmit ports.

- Trigger the power sensors so that they start sampling at the same time. Make sure the time difference between the samples of all sensors is less than 500 ns.

- For each individual sampling point (time domain), sum the coincident power samples of all ports and store them. Use these summed samples in all following steps.

 \cdot Find the start and stop times of each burst in the stored measurement samples. The start and stop times are defined as the points where the power is at least 30 dB below the highest value of the stored samples. In case of insufficient dynamic range, the value of 30 dB may need to be reduced appropriately.

 \cdot Between the start and stop times of each individual burst calculate the RMS (mean) power over the burst (Pburst) using the formula below:

 $\boldsymbol{P}_{\text{burst}} = \frac{1}{k} \sum_{n=1}^{k} \boldsymbol{P}_{\text{sample}}(\boldsymbol{n})$ (12)

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

D Δ C ——	V1.0	Report No.: DACE240718006RL
	 with 'k' being the total number of sa The highest of all Pburst values is be used for further calculations. Step 5: Calculating the Peak to I Using the value for Total Peak Port Total Mean Output Power measure ratio in dB. Step 6: Calculating the RF Output The RF output power (e.i.r.p.) at the calculated for each of the sub-botained in step 5 and the measure bands (see step 1 and step 2). The maximum e.i.r.p. calculations: Add the (stated) antenna assemble element. If applicable, add the additional botained in one antenna assemble maximum overall antenna gain (G - For each sub-band, PL (e.i.r.p.) s values shall be recorded in the tes Pl = A + C + Y (dBm) (13) 	amples and 'n' the actual sample number is the Total Mean Output Power and this value with Mean Power ratio. Wer calculated in step 3 and the highest value for ed in step 4, calculate the Peak to Average Power at Power (e.i.r.p.) for each sub-band. The lowest power level PL of the TPC range shall bands from the Peak to Mean Power Ratio ed values for Peak Power in each of the sub- ese values (values A in dBm) will be used for only gain G in dBi of the individual antenna eamforming gain Y in dB. by is intended for this power setting, the or G + Y) shall be used. hall be calculated using the formula below. These t report:

4.3.1 E.U.T. Operation:

Operating Enviro	Derating Environment:					
Temperature:	22.5 °C		Humidity:	49 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1,	TM2, TM3, T	⁻ M4, TM5, TM6	2	
Final test mode:		TM1,	TM2, TM3, T	M4, TM5, TM6		

4.3.2 Test Setup Diagram:

1

ΛΛ Power Density

DΔC

		-			6
Test Requirement:	Clause 4.2.3	- OP			
Test Limit:GeneralTest Limit:GeneralThe limits below are applicable to the system as a whole and in any configuration. This means that the antenna gain of the integral or de antenna has to be taken into account as well as the additional (bear in case of smart antenna systems (devices with multiple transmit ch In case of smart antenna systems (devices with multiple transmit ch In case of multiple (adjacent or non-adjacent) channels within the sa the total <i>RF Output Power</i> of all channels in that sub-band shall not limits defined in table 2 and table 3. In case of multiple, non-adjacent channels operating in separate sub total <i>RF Output Power</i> in each of the sub- bands shall not exceed to in table 2 and table 3.Limits for RF output power and Power Density at the highest power TPC is not required for channels whose nominal bandwidth falls cor the band 5 150 MHz to 5 250 MHz. For devices with TPC, the RF output power and the Power Density of to operate at the highest stated power level (P _H) of the TPC range s the levels given in table 2. Devices are allowed to operate without TPC. See table 2 for the app that shall apply in this case. Table 2: Mean e.i.r.p. limits for RF output power and Power Density power level (PH)				d in any possible al or dedicated al (beamforming) gain smit chains). In the same sub-band, hall not exceed the rate sub-bands, the xceed the limits defined a power level falls completely within Density when configured range shall not exceed the applicable limits Density at the highest	
				2	
1E	Frequency range	Mean e.i.r.p. limit for PH (dBm)		(dBm/MHz)	
24	(MHz)	with TPC	without TPC	with TPC	without TPC
	5 150 to 5 350	23	20/23 (see note 1)	10	7/10 (see note 2)
	5 470 to 5 725	30 (see note 3)	27 (see note 3)	17 (see note 3)	14 (see note 3)
DÀ	NOTE 1: The a nominal bandw MHz, in which NOTE 2: The a nominal bandw MHz, in which NOTE 3: Slave comply with the	applicable lim vidth falls cor case the app applicable lim vidth falls cor case the app e devices with e limits for th	it is 20 dBm, excep npletely within the l licable limit is 23 d it is 7 dBm/MHz, e npletely within the l licable limit is 10 d nout a <i>Radar Interf</i> e e frequency range	ot for transmis band 5 150 M Bm. xcept for tran band 5 150 M Bm/MHz. erence Detec 5 250 MHz to	ssions whose Mz to 5 250 smissions whose Mz to 5 250 <i>tion</i> function shall o 5 350 MHz.
4.4.1 E.U.T. Operation:	S.C.			6	

Operating Envir	onment:					
Temperature:	22.5 °C		Humidity:	49 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1,	TM2, TM3, T	ГМ4, ТМ5, ТМ6		
Final test mode:		TM1,	TM2, TM3, T	ГМ4, ТМ5, ТМ6		

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

4.4.2 Test Setup Diagram	n:	Report No.: DACE240718006RL004
	RF TEST SYSTEM	TST PASS
4.4.3 Test Data: Please Refer to Appendix	for Details.	DAC
E		

DAC

Report No.: DACE240718006RL004

Test Requirement: Clause 4.2.4.2 Test Limit: Relative Level (dB) 0 dB = Reference Level -20 dB -28 dB 40 dB -47 dB -15×N 10.8 × N 108 × N -N 0 N $1.5 \times N$ Frequency offset (MHz) $-0.55 \times N$ $-0.5 \times N$ $0.5 \times N$ $0.55 \times N$ N = Nominal Channel Bandwidth (MHz) Figure 1: Transmit spectral power mask The mean Power Density (measured with a 1 MHz measurement bandwidth) of the transmitter unwanted emissions within the 5 GHz RLAN bands shall not exceed the limits of the mask provided in figure 1 or an absolute level of - 30 dBm/MHz, whichever is greater. The limits in figure 1 are relative to the maximum Power Density of the RLAN device when measured with a reference bandwidth of 1 MHz. The mask is only applicable within the band of operation. Beyond the band edges the requirements of clause 4.2.4.1 apply. In case of smart antenna systems (devices with multiple transmit chains) each of the transmit chains shall meet the limits provided in figure 1. For transmitter unwanted emissions within the 5 GHz RLAN bands, simultaneous transmissions in adjacent channels may be considered as one signal with an actual Nominal Channel Bandwidth of "n" times the individual Nominal Channel Bandwidth where "n" is the number of adjacent channels used simultaneously. For simultaneous transmissions in multiple non-adjacent channels, the overall transmit spectral power mask is constructed in the following manner. First, a mask as provided in figure 1 is applied to each of the channels. Then, for each frequency point, the greatest value from the spectral masks of all the channels assessed shall be taken as the overall spectral mask requirement at that frequency. Test Method: Clause 5.4.6.2.1.2 Procedure: This method shall be used if the UUT is not capable of operating in a continuous transmit mode (duty cycle less than 100 %). In addition, this option can also be used as an alternative to option 1 for systems operating in a continuous transmit mode. Step 1: Determination of the reference average power level. · Spectrum analyser settings: - Resolution bandwidth: 1 MHz - Video bandwidth: 30 kHz - Detector mode: RMS - Trace Mode: Max Hold - Sweep time: ³ 1 min - Centre Frequency: Centre frequency of the channel being tested - Span: 2 × Nominal Channel Bandwidth · Use the marker to find the highest average power level of the power envelope of the UUT. This level shall be used as the reference level for the relative measurements. Step 2: Determination of the relative average power levels. · Adjust the frequency range of the spectrum analyser to allow the measurement to be performed within the sub- bands 5 150 MHz to 5 350 MHz and 5 470 MHz to 5 725 MHz. No other parameter of the spectrum analyser should be changed. 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 E-mail: service@dace-lab.com Web: http://www.dace-lab.com

Transmitter unwanted emissions within the 5 GHz RLAN bands 4.5

Page 20 of 98

DΔC

4.6 Transmitter unwanted emissions outside the 5 GHz RLAN bands, conducted

	Test Requirement:	Clause 4.2.4.1					
	Test Limit:	The level of transmitter unwanted emissions outside the 5 GHz RLAN bands shall not exceed the limits given in table 4. In case of equipment with antenna connectors, these limits apply to emissions at					
		the antenna port (conducted). For emission	s radiated by the c	abinet or emissions			
	- 20	radiated by integral antenna equipment (with	hout antenna conn	ectors), these limits			
	2 M	Table 4: Transmitter unwanted emission lim	its outside the 5 G	Hz RLAN bands			
				24			
		Erequency range	Maximum	Bandwidth			
2			power	Dandwidth			
		30 MHz to 47 MHz	-36 dBm	100 kHz			
		47 MHz to 74 MHz	-54 dBm	100 kHz			
		74 MHz to 87,5 MHz	-36 dBm	100 kHz			
		87,5 MHz to 118 MHz	-54 dBm	100 kHz			
	6	118 MHz to 174 MHz	-36 dBm	100 kHz			
_	NG.	174 MHz to 230 MHz	-54 dBm	100 kHz			
		230 MHz to 470 MHz	-36 dBm	100 kHz			
		470 MHz to 862 MHz	-54 dBm	100 kHz			
		862 MHz to 1 GHz	-36 dBm	100 kHz			
		1 GHz to 5,15 GHz	-30 dBm	1 MHz			
	NC.	5,35 GHz to 5,47 GHz	-30 dBm	1 MHz			
	2P	5,725 GHz to 26 GHz	-30 dBm	1 MHz			
	Test Method:	Clause 5.4.5.2.1					
	Procedure:	Pre-scan The UUT shall be connected to a spectrum	analyser capable of	of RF power			
		This pre-scan test procedure shall be used of the UUT.	to identify potentia	I unwanted emissions			
	20	Step 1:	· · · · · · · · ·				
	V	 The sensitivity of the spectrum analyser sl least 12 dB below the limits given in clause 	10010 be such that	the noise floor is at			
		Step 2:	,	J-			
		The unwanted emissions over the range 3 Spectrum analyzer settings:	0 MHz to 1 000 MH	Hz shall be identified.			
		- Resolution bandwidth: 100 kHz					
		- Video bandwidth: 300 kHz					
		- Detector mode: Peak					
		- Sweep Points: ≥ 9 700					
		For spectrum analysers not supporting this	number of sweep p	points, the frequency			
	6	number of sweep points, the frequency adju	ustment in clause 5	6.4.5.2.1.2 (step 1, last			
	100	bullet) may be omitted.					
		- Sweep time: For non-continuous transmis	sions (duty cycle le	ess than 100 %), the			
		the measurement time is greater than two t	ransmissions of the	e UUT.			
		EXAMPLE 1: For non-continuous transmiss	sions, if the UUT is	using a test			
		then the sweep time has to be areater than	u) a transmitter on 4 ms per 100 kHz.	+ on time of 2 ms,			
	arrist Dividebased 14, 9, 4/E. Dividebased 1, 1 las	nate Ealenae V. Leebneleau Dark, Tenateu Connunity, Chiven Cubdiel	right Declar District Changes				

Tel: +86-755-23010613

Report No.: DACE240718006RL004

• Allow the trace to stabilize. Any emissions identified that have a margin of less than 6 dB with respect to the limits given in clause 4.2.4.1.2, table 4 shall be individually measured using the procedure in clause 5.4.5.2.1.2 and compared to the limits given in clause 4.2.4.1.2, table 4. **Step 3:**

- The unwanted emissions over the range 1 GHz to 26 GHz shall be identified.
- · Spectrum analyser settings:
- Resolution bandwidth: 1 MHz
- Video bandwidth: 3 MHz
- Detector mode: Peak
- Trace Mode: Max Hold
- Sweep points: $\geq 25\ 000$

For spectrum analysers not supporting this number of sweep points, the frequency band may be segmented. For spectrum analysers capable of supporting twice this number of sweep points, the frequency adjustment in clause 5.4.5.2.1.2 (step 1, last bullet) may be omitted.

- Sweep time: For non-continuous transmissions (duty cycle less than 100 %), the sweep time shall be sufficiently long, such that for each 1 MHz frequency step, the measurement time is greater than two transmissions of the UUT.

EXAMPLE 2: For non-continuous transmissions, if the UUT is using a test sequence as described in clause 5.3.1.1 with a transmitter on + off time of 2 ms, then the sweep time has to be greater than 4 ms per 1 MHz.

 \cdot Allow the trace to stabilize. Any emissions identified that have a margin of less than 6 dB with respect to the limits given in clause 4.2.4.1.2, table 4 shall be individually measured using the procedure in clause 5.4.5.2.1.2 and compared to the limits given in clause 4.2.4.1.2, table 4.

Measurement of the emissions identified during the pre-scan The limits for transmitter unwanted emissions in clause 4.2.4.1 refer to average power levels.

The steps below shall be used to accurately measure the individual unwanted emissions identified during the pre-scan measurements above.

Continuous transmit signals:

For continuous transmit signals, a simple measurement using the RMS detector of the spectrum analyser is permitted. The measured values shall be recorded and compared with the limits in clause 4.2.4.1.2, table 4.

Non-continuous transmit signals:

For non-continuous transmit signals, the measurement shall be made only over the "on" part of the burst.

Step 1:

• The level of the emissions shall be measured in the time domain, using the following spectrum analyser settings:

- Centre Frequency: Frequency of emission identified during the pre-scan

- RBW: 100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)
- VBW: 300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)
- Frequency Span: 0 Hz
- Sweep mode: Single Sweep

- Sweep Time: Suitable to capture one transmission burst. Additional measurements may be needed to identify the length of the transmission burst. In case of continuous signals, the Sweep Time shall be set to 30 ms

- Sweep points: Sweeptime [μ s] / 1 μ s with a maximum of 30 000
- Trigger: Video (burst signals) or Manual (continuous signals)
- Detector: RMS
- Trace Mode: Clear/Write

Tel: +86-755-23010613

 \cdot Adjust the centre frequency (fine tune) to capture the highest level of one burst of the emission to be measured.

This fine tuning can be omitted for spectrum analysers capable of supporting twice this number of sweep points required in step 2 and step 3 from the pre-scan procedure in clause 5.4.5.2.1.1.

Step 2:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

סאכ	V1.0	Report No.: DACE240718006RL004
DAC DAC DAC DAC	 V1.0 Adjust the trigger Set a window (statin which the RMS) If the spurious eministry window shall be set Select RMS power which is the RMS process with the applicable Repeat this process and corresponding In case of conduct multiple transmit charactive transmit charac	Report No.: DACE240718006RL004 level to select the transmissions with the highest power level. art and stop lines) to match with the start and end of the burst and power shall be measured using the Time Domain Power function. ssion to be measured is a continuous signal, the measurement at to match the start and stop times of the sweep. er to be measured within the selected window and note the result power of this particular spurious emission. Compare this value limit provided by clause 4.2.4.1.2, table 4. lure for every emission identified during the pre-scan. The values frequencies shall be recorded. ed measurements on smart antenna systems (equipment with hains), the measurements shall be repeated for each of the tins. Comparison with the applicable limits shall be done using
	either of the option · Option 1: the resu segments shall be 4.2.4.1.2. Option 2: the resul with the limits prov reduced by 10 × lo	s given below: ults for each of the transmit chains for the corresponding 1 MHz added and compared with the limits provided by table 4 in clause ts for each of the transmit chains shall be individually compared ided by table 4 in clause 4.2.4.1.2 after these limits have been g10 (Tch) (number of active transmit chains).

4.6.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22.5 °C		Humidity:	49 %	Atmospheric Pressure:	102 kPa	
Pretest mode:		TM1,	TM2, TM3, 1	FM4, TM5, TM6		5	
Final test mode: T		TM1,	TM2, TM3, 1	FM4, TM5, TM6			

4.6.2 Test Setup Diagram:

DΔC

Report No.: DACE240718006RL004

Page 25 of 98

4.7 Receiver spurious emissions, conducted

Test Requirement:	Clause 4.2.5		
Test Limit:	The spurious emissions of the rece In case of equipment with antenna the antenna port (conducted). For radiated by integral antenna equip are e.r.p. for emissions up to 1 GH Table 5: Spurious radiated emission	eiver shall not excee connectors, these li emissions radiated l ment (without anten z and e.i.r.p. for emi on limits	ed the limits given in table 5. imits apply to emissions at by the cabinet or emissions na connectors), these limits ssions above 1 GHz.
	Frequency range	Maximum power	Measurement
	30 MHz to 1 GHz	-57 dBm	
	1 GHz to 26 GHz	-47 dBm	1 MHz
Test Method:	Clause 5.4.7.2.1		
Procedure:	Pre-scan	20	
	The test procedure below shall be emissions of the UUT. Step 1: • The sensitivity of the spectrum an least 12 dB below the limits given	used to identify poten nalyser should be su in clause 4.2.5.2, tab	ential receiver spurious the that the noise floor is at ole 5.
DIE	 Step 2: The emissions shall be measured. Spectrum analyser settings: Resolution bandwidth: 100 kHz Video bandwidth: 300 kHz Detector mode: Peak Trace Mode: Max Hold Sweep Points: ≥ 9 700 For spectrum analysers not support band may be segmented. For spectrum analysers not support band may be segmented. For spectrum bullet) may be omitted. Sweep time: Auto Wait for the trace to stabilize. Any than 6 dB with respect to the limits individually measured using the prime: Auto 	d over the range 30 l rting this number of ctrum analysers cap ency adjustment in o y emissions identified given in clause 4.2. ocedure in clause 5.	MHz to 1 000 MHz. sweep points, the frequency able of supporting twice this clause 5.4.7.2.1.2 (step 1, last d that have a margin of less 5.2, table 5, shall be 4.7.2.1.2 and compared to
DAE	the limits given in clause 4.2.5.2, to Step 3: The emissions shall now be meated as the second second	rting this high number egmented. For spect veep points, the frequence be omitted. y emissions identified given in clause 4.2. ocedure in clause 5. able 5. dentified during th	er of sweep points, the rum analysers capable of uency adjustment in clause d that have a margin of less 5.2, table 5, shall be 4.7.2.1.2 and compared to e pre-scan
	profe Science & Technology Park Tenstery Committee	bivan Subdistrict Basian Distri	at Shanzhan Guangdong China

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Web: http://www.dace-lab.com

ΟΛ Γ —	V1.0	Report No.: DACE240718006RL004
DAC		
DAC DAC DAC	 The limits for receiver spurious en levels. The steps below shall be used to emissions identified during the prassumes the spectrum analyser for step 1: The level of the emissions shall analyser settings: Measurement Mode: Time Dom Centre Frequency: Frequency of Resolution Bandwidth: 100 kHz Video Bandwidth: 300 kHz (emistication of the emission state) and the state of the emission state of the emission state of the emission to be measured. This fine tuning can be omitted for this number of sweep points requiprocedure in clause 5.4.7.2.1.1. Step 2: Set a window where the start arr burst with the highest level and rewindow. If the spurious emission to be measurement window shall be set step 3: In case of conducted measurem multiple receive chains), step 2 slichains. 	missions in clause 4.2.5 refer to average power accurately measure the individual unwanted e-scan measurements above. This method has a Time Domain Power function. be measured using the following spectrum ain Power of the emission identified during the pre-scan (emissions < 1 GHz) / 1 MHz (emissions > 1 GHz) ssions < 1 GHz) / 3 MHz (emissions > 1 GHz) or Manual (for continuous signals) e tune) to capture the highest level of one burst of or spectrum analysers capable of supporting twice irred in step 2 and step 3 from the pre-scan d stop indicators match the start and end of the ecord the value of the power measured within this measured is a continuous transmission, the et to the start and stop times of the sweep. ments on smart antenna systems (equipment with hall be repeated for each of the active receive

4.7.1 E.U.T. Operation:

NE

Operating Envir	onment:							
Temperature:	22.5 °C		Humidity:	49 %	Atmosphe	eric Pressure:	102 kPa	V
Pretest mode:		TM1,	TM2, TM3, ⁻	FM4, TM5, TM	6			
Final test mode:		TM1,	TM2, TM3, ⁻	FM4, TM5, TM	6			

DAG

NE

4.7.2 Test Setup Diagra	m:	Report No.: DACE240718006RL004
	C RF TEST SYSTEM EUT EUT	TST PASS
4.7.3 Test Data: Please Refer to Appendix	for Details.	DAE
E		

DγG

Report No.: DACE240718006RL004

4.8 Adaptivity (Channel Access Mechanism)

Test Requirement:	Clause 4	.2.7.3.2	$\frac{2}{2}$		
-	Clause 4	.2.7.3.3	3		VE
Test Limit:	If a Chan may be s all transn and shall The dura until the d exceed 2 The <i>Initia</i> and there <i>Channel</i> each imp Table 7: I	anel Oc separate nission: I not ex tion fro end of f 20 ms. ating De efore th Access blement Priority	cupancy ed by ga s and all ceed the m the sta the last the evice ma e Chann s Engines ed Priori Class de	consists of ps. The Cha gaps of 25 maximum art of the fin ransmission y have data rel Access M s as describ ity Class). ependent C	more than one transmission the transmission annel Occupancy Time is the total duration of µs duration or less within a Channel Occupar Channel Occupancy Time in table 7 and table st transmission within a Channel Occupancy in that same Channel Occupancy shall not to be transmitted in different Priority Classes Mechanism is allowed to operate different bed in clause 4.2.7.3.2.6 simultaneously (one than the formula of the transmission) thannel Access parameters for Supervising
	Devices				
	Class #	p0	CWmi n	CWmax	Maximum Channel Occupancy Time (COT)
	4	1	3	7	2 ms
	3	1	7	15	4 ms
	2	3	15	63	6 ms (see note 1 and note 2)
	1	7	15	1 023	6 ms (see note 1)
	Occupa is not in NOTE 2 increase random that ma exceede Occupa NOTE 3 values a	Incy)be Icluded 2: The r ed to 10 numbe y excee ed 6 m Incy sha 3: The v are allo	fore inclu in the ch naximum 0 ms by 6 er q for a ed 6 ms 6 s. The ch all remai values fo wed.	uding any su nannel occu n Channel C extending C ny backoff(s or which fol noice betwe n unchange r p0, CWmi	Such pause shall be 6 ms. Pause duration pancy time. Decupancy Time (COT) of 6 ms may be CW to CW \times 2 + 1 when selecting the s) that precede the Channel Occupancy low the Channel Occupancy that en preceding or following a Channel ed during the operation time of the device. n, CWmaxare minimumvalues. Greater
	Table 8: I	Priority	Class de	ependent C	hannel Access parameters for
	Supervis	ed Dev	ices		
	Class #	p0	CWmi n	CWmax	Maximum Channel Occupancy Time (COT)
	4	2	3	7	2 ms
	3	2	7	15	4 ms
	2	3	15	1 023	6 ms (see note 1)
	1	7	15	1 023	6 ms (see note 1)
, la	NOTE 1 increase	1: The r ed to 8	naximun ms by in	n <i>Channel C</i> serting one	<i>Occupancy Time</i> (COT) of 6 ms may be or more pauses. The minimum duration
102, Building H1, & 1/F., Building H, Ho	ngfa Science &	EC TO 8	Park, Tangto	Du Connunity, Shi	or more pauses. The minimum duration
Web: http://www.dace-lab.com	Tel: +	+86-755-3	23010613	E-m	ail: service@dace-lab.com Page 28 of 98

<u>סאר</u> –		/1.0	V		Repo	ort No.: DACE240718006RL
	2 2 2 2 6	of a Occ is n NO valu The Opt con any inde 0 d	pause shall supancy)befo of included in TE 2: The va- les are allow <i>ED Thresho</i> ion 1: For eq forming to IE combination ependent of t Bi receive an	be 100 μ s. The r re including any the channel occ lues for p0, CWr ed. old level (<i>TL</i>) dep uipment that for EE 802.11 TM -20 of these clauses he equipment's r tenna the <i>ED Thi</i>	maximum duration (Chann such pause shall be 6 ms cupancy time. nin, CWmaxare minimum rends on the type of equip its operation in the 5 GHz 16 [9], clause 17, clause 1 s, the ED Threshold Level maximum transmit power of reshold Level (TL) shall be	The line is the second
E		TL Opt Con (<i>TL</i>) Ass For For Equ tran	= -75 dBm/W ion 2: For eq ion 1, and to forming to no shall be pro uming a 0 dE $P_H \le 13$ dBm $^{-1} 13$ dBm < P $P_H \ge 23$ dBi ipment shall smissions ar	IHz (2) uipment conform at least one othe one of the clause portional to the e Bi receive antenr n: TL = -75 dBm/ $P_{\rm H}$ < 23 dBm: TL m: TL = -85 dBm consider a chan re detected at a l	ning to one or more of the er operating mode, and for is listed in Option 1, the <i>El</i> equipment's maximum tran ha the <i>ED Threshold Level</i> MHz = -85 dBm/MHz + (23 dBr /MHz nel to be occupied as long evel greater than the TL.	clauses listed in r equipment D <i>Threshold Level</i> nsmit power (P_H). <i>(TL)</i> shall be: m - P_H) (3) g as other RLAN
24		The u · with <i>Trans</i> the to less t	use of Short in an observ smissions by otal duration than 2 500 µs	Control Signallin ration period of 5 the equipment s of the equipmen s within said obs	g Transmissions is constra 0 ms, the number of Shor shall be equal to or less that t's Short Control Signalling ervation period.	ained as follows: t Control Signalling an 50; and g Transmissions shall t
Test Method:		Claus	se 5.4.9.3.2	200	h	20
Procedure:		Claus	se 5.4.9.2.4 se 5.4.9.3.2			
4.8.1 E.U.T. O	peration:					
Operating Envir	onment:	C			SC	
Temperature:	22.5 °C		Humidity:	49 %	Atmospheric Pressure:	102 kPa
Drotoot mode:		TN/4/	<u></u>			

Temperature:	22.5 °C		Humidity:	49 %	Atmospheric Pressure:	102 kPa	
Pretest mode:		TM10)	¥			JD
Final test mode:		TM10)				

DAG

DAG

)AC

?

NE

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Page 29 of 98 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

NE

4.8.2 Test Setup Dia	V1.0	Report No	.: DACE240718006RL004
		EUT	DAC
4.8.3 Test Data: Please Refer to Apper	dix for Details.	DAG	
	7		

Report No.: DACE240718006RL004

1

4.9 Receiver Blocking

DΔC

Test Requirement:	Clause 4.2.8				
Test Limit:	While maintaining the blocking levels the limits defined in Table 9: Receiver E	um performance ed frequency offs arameters	criteria as defined i ets shall be equal to	n clause 4.2.8.3, o or greater than	
		-	26		· · · · · · · · · · · · · · · · · · ·
	Wanted signal mean power	Blocki ng	Blocking signal (see note 2)	power (dBm)	Type of blocking
	from companion device (dBm)	signal freque ncy (MHz)	Master or Slave with radar detection (see table D.2, note 2)	Slave without radar detection (see table D.2, note 2)	signal
	Pmin + 6 dB	5 100	-53	-59	Continuous Wave
	Pmin + 6 dB	4 900 5 000 5 975	-47	-53	Continuous Wave
NE	meet the minimum absence of any bl NOTE 2: The leve of conducted mea connector irrespe	n performa locking sig els specifie asurement ctive of ar	ance criteria as d gnal. ed are levels in fro is, the same level itenna gain.	etined clause 4.2.8 ont of the UUT ante s should be used a	.3 in the enna. In case t the antenna
Test Method:	Clause 5.4.10.2.1		E		6
	Figure 18 shows the blocking test. The oneed to be put in a measurement.	ts shall be te test set companior shielded	 terminated. -up which can be n device may required room to prevent in 	used for performin uire appropriate shi t may have a negat	g the receiver ielding or may ive impact on the
	Shielding or Shielded Room		Splitter/ Combiner	irect. Coupler	Performance Monitoring Device
	Figure 18: Test Set The steps below de described in clause Step 1: • The UUT shall be 5.3.2).	-up for receive the period of	ceiver blocking procedure to verify e first operating fre	Spectrum Analyzer optional y the receiver block equency to be teste	ing requirement a ed (see clause

ΔΛΕ –	V1.0	VE	F	Report No.: DACE240718006RL004
DAC	V1.0 • The Step • With betwee in figu steps 4.2.8. is Pmir • This of the Step • The table criteri • If the blocki level v met. T test re Step • Rep	blocking signal generator is 3: In the blocking signal generation are the UUT and the association are 18. The attenuation of the to a value at which the mine 3 is still met. The resulting are as still met. The resulting are and a signal level (P _{min}) is increation wanted signal at the UUT in 4: level of the blocking signal 9. It shall be verified and re a as specified in clause 4.2 are performance criteria as sping signal at the UUT may be whereby the performance condition the highest level at which the at step 4 for each remaining 5: eat step 4 for each remaining 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 	s set to the first frequence ator switched off a comm iated companion device ne variable attenuator sh himum performance crite level for the wanted sign ased by 6 dB resulting in receiver input. at the UUT input is set to corded in the test report 8.3 are met. becified in clause 4.2.8.3 be further increased (e.g. criteria as specified in cla he performance criteria a	export No.: DACE240718006RL004 export No.: DACE240718006RL004 export No.: DACE240718006RL004 cy as defined in table 9. unication link is set up using the test setup shown all be increased in 1 dB ria as specified in clause al at the input of the UUT a new level (Pmin + 6 dB) o the level provided in that the performance are met, the level of the . in steps of 1 dB) until the use 4.2.8.3 are no longer are met is recorded in the ency and level as specified
DAG	in tab Step Repe	le 9. 6: at step 2 to step 5 with the ich the blocking test has to	UUT operating at the oth	ner operating frequencies

4.9.1 E.U.T. Operation:

Operating Environment:						
Temperature: 22.5 °C	Humidity:	49 %	Atmospheric Pressure:	102 kPa		
Pretest mode:	TM7, TM8, TM9	. (
Final test mode:	TM7, TM8, TM9			SC		
4.9.2 Test Setup Diagram:						

4.9.2 Test Setup Diagram:

Report No.: DACE240718006RL004

HT240718003--DA802--5.2G--CE CE_5.2G_WIFI (EN 301893 V2.1.1_2017-05) Test Data

1. Nominal Centre frequencies

V1.0

DΔG

Condition	Antenna	Modulation	Frequency(MHz)	Measured Frequency (MHz)	Deviation (ppm)	limit(ppm)	Result
NVNT	ANT1	802.11a	5180	5180.160	30.89	±20	Fail
NVNT	ANT1	802.11a	5200	5200.180	34.62	±20	Fail
NVNT	ANT1	802.11a	5240	5240.160	30.53	±20	Fail
NVNT	ANT1	802.11n(HT20)	5180	5180.180	34.75	±20	Fail
NVNT	ANT1	802.11n(HT20)	5200	5200.180	34.62	±20	Fail
NVNT	ANT1	802.11n(HT20)	5240	5240.180	34.35	±20	Fail
NVNT	ANT1	802.11n(HT40)	5190	5190.160	30.83	±20	Fail
NVNT	ANT1	802.11n(HT40)	5230	5230.200	38.24	±20	Fail

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 41

DD	Keysight Spectrum Analyzer - Swept SA RE S0 Ω AC Center Freq 5.23000000	0 GHZ PNO: Fast → IFGein:Low Trig: Free Run Atten: 16 dB	ALIGN OFF [04:53:46 PM Jul 24,202 #Avg Type: RMS TRACE Avg[Hold: 10/10 TYPE OFT NNN1	4 Frequency	
	Ref Offset5.99 dE 10 dB/div Ref 10.98 dBm 0.900) Selfindestrational on the states 1 with trade	Mkr1 5.230 20 GH -18.669 dBr -18.669 dBr	Center Freq 5.230000000 GHz	
	-290 -290 -380 -490 -590		in the second	Start Freq 5.19000000 GHz	
	480 0 790 Center 5.23000 GHz #Res BW 100 kHz	#VBW 300 kHz	Span 80.00 MH Sween 7 667 ms (1001 pt	Stop Freq 5.27000000 GHz CF Step 8.00000 MHz	
5		2.230 20 GHz -18.669 dBm 2.212 00 GHz -13.619 dBm 2.248 40 GHz -15.309 dBm	TION FUNCTION WADTH FUNCTION VALUE	Auto Man Freq Offset 0 Hz	
	5 7 9 9 10			Scale Type	
OAC	MSG	~~~	Lostatus CAlign Now All rec	luired	
6					

D

V1.0

Report No.: DACE240718006RL004

2. 99% Occupied Bandwidth

DΔG

Condition	Antenna	Mode	Frequency (MHz)	99%%BW(MHz)	Declared BW(MHz)	Bandwidth Ratio(%)	Limit(%)	Result
NVNT	ANT1	802.11a	5180.00	16.39	20	81.96	80~100	Pass
NVNT	ANT1	802.11a	5200.00	16.39	20	81.94	80~100	Pass
NVNT	ANT1	802.11a	5240.00	16.39	20	81.94	80~100	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	17.58	20	87.92	80~100	Pass
NVNT	ANT1	802.11n(HT20)	5200.00	17.58	20	87.92	80~100	Pass
NVNT	ANT1	802.11n(HT20)	5240.00	17.59	20	87.93	80~100	Pass
NVNT	ANT1	802.11n(HT40)	5190.00	35.84	40	89.61	80~100	Pass
NVNT	ANT1	802.11n(HT40)	5230.00	35.97	40	89.91	80~100	Pass

 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 46 of 98

V1.0

Report No.: DACE240718006RL004

V1.0

Report No.: DACE240718006RL004

V1.0 Report No.: DACE240718006RL004 DAC Keysight Spectrum Analyzer - Occu SENSE:INT ALIGN Center Freq: 5.24000000 GHz Trig: Free Run Avg|Hold: 10/10 #Atten: 40 dB 04:32:35 PM Jul 24, 2024 Radio Std: None Frequency Center Freq 5.240000000 GHz #IFGain:Low Radio Device: BTS Ref Offset 6.07 dB Ref 17.14 dBm **Center Freq** 5.24000000 GHz Center 5.24 GHz #Res BW 100 kHz Span 40 MHz #Sweep 2 s CF Step #VBW 300 kHz MH 4.000000 Auto Occupied Bandwidth Total Power 8.01 dBm 17.587 MHz Freq Offset 0 Hz Transmit Freq Error 170.24 kHz % of OBW Power 99.00 % x dB Bandwidth 20.16 MHz x dB -26.00 dB . 6 Align Now All required 99%_Occupied_Bandwidth_NVNT_ANT1_802_11n(HT40)_5190 Keysight Spect SENSE:INT ALIGN OFF Center Freq: 5.19000000 GHz Trig: Free Run Avg|Hold: 10/10 #Atten: 40 dB RI 04:46:51 PM Jul 24, 2024 Radio Std: None Frequency Center Freq 5.190000000 GHz Radio Device: BTS Ref Offset 6.06 dB Ref 9.12 dBm 0 dB/div og **Center Freq** 5.19000000 GHz Span 80 MHz #Sweep 2 s Center 5.19 GHz #Res BW 100 kHz CF Step 8.000000 MHz #VBW 300 kHz Ma Auto **Total Power** 8.07 dBm Occupied Bandwidth 35.843 MHz Freq Offset 0H 196.93 kHz % of OBW Power Transmit Freq Error 99.00 % 4 37.64 MHz -26.00 dB x dB Bandwidth x dB 2 Align Now All required 99%_Occupied_Bandwidth_NVNT_ANT1_802_11n(HT40)_5230 NE C DAG 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 49 of 98

DAG -	V1.0			Report No.: DACE24071	3006RL004
DA	Keysight Spectrum Analyzer - Occupied BW M RL RF 50 Ω AC Center Freq 5.230000000 GI #IF	Z SENSE:INT Center Freq: 5.230000000 GHz Trig: Free Run Avg Holo (Gain:Low #Atten: 40 dB	ALIGN OFF 04:54:25 PM Jul 24, 2024 Radio Std: None d: 10/10 Radio Device: BTS	Frequency	
	Ref Offset 5.99 dB 10 dB/div Ref 8.98 dBm Log			Center Freq	
	-11.0 -21.0 -31.0	<u>พระวิทยางและหนังสุขานสายและสุขาร์สายมา</u> มการสุขาร์สายมา	hojterini	5.230000000 GHz	
1	-41.0 -51.0 -61.0				26
	-71.0 -81.0 Center 5.23 GHz		Span 80 MHz	1	
E	#Res BW 100 kHz Occupied Bandwidth	#VBW 300 kHz Total Power	#Sweep 2 s	CF Step 8.000000 MHz <u>Auto</u> Man	
	35.9 Transmit Freq Error	182.75 kHz % of OBW Pow	rer 99.00 %	Freq Offset 0 Hz	
	x dB Bandwidth	37.69 MHz x dB	-26.00 dB		1
E	MSG	. [6	STATUS Align Now All require	d	

Report No.: DACE240718006RL004

3. RF output power

DΔG

							_	<u></u>	
Condition	Antenna	Mode	Frequency (MHz)	ANT_Gain(dBi)	Max Burst RMS Power (dBm)	Burst Number	Max EIRP (dBm)	Limit (dBm)	Result
NVNT	ANT1	802.11a	5180.00	0.00	4.33	47	4.33	23	Pass
LVLT	ANT1	802.11a	5180.00	0.00	4.28	47	4.28	23	Pass
LVHT	ANT1	802.11a	5180.00	0.00	4.24	47	4.24	23	Pass
HVLT	ANT1	802.11a	5180.00	0.00	4.19	46	4.19	23	Pass
HVHT	ANT1	802.11a	5180.00	0.00	4.16	47	4.16	23	Pass
NVNT	ANT1	802.11a	5200.00	0.00	4.60	46	4.60	23	Pass
LVLT	ANT1	802.11a	5200.00	0.00	4.56	47	4.56	23	Pass
LVHT	ANT1	802.11a	5200.00	0.00	4.56	47	4.56	23	Pass
HVLT	ANT1	802.11a	5200.00	0.00	4.55	46	4.55	23	Pass
HVHT	ANT1	802.11a 👞	5200.00	0.00	4.55	46	4.55	23	Pass
NVNT	ANT1	802.11a	5240.00	0.00	4.67	46	4.67	23	Pass
LVLT	ANT1	802.11a	5240.00	0.00	4.67	47	4.67	23	Pass
LVHT	ANT1	802.11a	5240.00	0.00	4.68	47	4.68	23	Pass
HVLT	ANT1	802.11a	5240.00	0.00	4.66	47	4.66	23	Pass
HVHT	ANT1	802.11a	5240.00	0.00	4.66	47	4.66	23	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	0.00	3.49	50	3.49	23	Pass
LVLT	ANT1	802.11n(HT20)	5180.00 <	0.00	3.44	50	3.44	23	Pass
LVHT	ANT1	802.11n(HT20)	5180.00	0.00	3.46	50	3.46	23	Pass
HVLT	ANT1	802.11n(HT20)	5180.00	0.00	3.45	49	3.45	23	Pass
HVHT	ANT1	802.11n(HT20)	5180.00	0.00	3.45	50	3.45	23	Pass
NVNT	ANT1	802.11n(HT20)	5200.00	0.00	4.47	49	4.47	23	Pass
LVLT	ANT1	802.11n(HT20)	5200.00	0.00	4.47	50	4.47	23	Pass
LVHT	ANT1	802.11n(HT20)	5200.00	0.00	4.45	50	4.45	23	Pass
HVLT	ANT1	802.11n(HT20)	5200.00	0.00	4.47	49	4.47	23	Pass
HVHT	ANT1	802.11n(HT20)	5200.00	0.00	4.46	50	4.46	23	Pass
NVNT	ANT1	802.11n(HT20)	5240.00	0.00	4.04	50	4.04	23	Pass
LVLT	ANT1	802.11n(HT20)	5240.00	0.00	4.01	49	4.01	23	Pass
LVHT	ANT1	802.11n(HT20)	5240.00	0.00	4.01	49	4.01	23	Pass
HVLT	ANT1	802.11n(HT20)	5240.00	0.00	4.01	50	4.01	23	Pass
HVHT	ANT1	802.11n(HT20)	5240.00	0.00	4.00	50	4.00	23	Pass
NVNT	ANT1	802.11n(HT40)	5190.00	0.00	4.00	94	4.00	23	Pass
LVLT	ANT1	802.11n(HT40)	5190.00	0.00	3.97	94	3.97	23	Pass
LVHT	ANT1	802.11n(HT40)	5190.00	0.00	3.94	94	3.94	23	Pass
HVLT	ANT1	802.11n(HT40)	5190.00	0.00	3.93	94	3.93	23	Pass
HVHT	ANT1	802.11n(HT40)	5190.00	0.00	3.91	94	3.91	23	Pass
NVNT	ANT1	802.11n(HT40)	5230.00	0.00	4.11	94	4.11	23	Pass
LVLT	ANT1	802.11n(HT40)	5230.00	0.00	4.12	94	4.12	23	Pass
LVHT	ANT1	802.11n(HT40)	5230.00	0.00	4.12	94	4.12	23	Pass 🧳
HVLT	ANT1	802.11n(HT40)	5230.00	0.00	4.12	94	4.12	23	Pass
HVHT	ANT1	802.11n(HT40)	5230.00	0.00	4.10	94	4.10	23	Pass

NVNT_ANT1_802_11a_Power_5180

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

Report No.: DACE240718006RL004

ø

4. Power Spectral Density

DΔC

Condition	Antenna	Mode	Frequency (MHz)	Max PSD(dBm/MHz)	Limit(dBm/MHz)	Result
NVNT	ANT1	802.11a	5180.00	-7.06	10	Pass
NVNT	ANT1	802.11a	5200.00	-6.98	10	Pass
NVNT	ANT1	802.11a	5240.00	-6.89	10	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	-8.25	10	Pass
NVNT	ANT1	802.11n(HT20)	5200.00	-7.25	10	Pass
NVNT	ANT1	802.11n(HT20)	5240.00	-7.71	10	Pass
NVNT	ANT1	802.11n(HT40)	5190.00	-10.35	10	Pass
NVNT	ANT1	802.11n(HT40)	5230.00	-10.54	10	Pass

6

	20 Frequency: 5230.00	Power Spectral Density	PSD: 10 54dBm/MHz PSD: 10 54dBm/MHz PSD(dBm/MHz) PSD(dBm/MHz) Max.Point
T	0 - -20 - (tt:B)oponitoria		
E	-60 -00 -00 -100 5150 RBW: 10kHz, VBW: 30kHz, Sweep F	1001	5350 Frequency(MHz)
			EDAG

DΔC

5. Transmitter emissions outside bands

Condition	Antenna	Mode	Frequency (MHz)	Range	Spur Freq(MHz)	Spur Freq Peak(dBm)	Spur Level RMS(dBm)	Limit(dBm)	Result
NVNT	ANT1	802.11a	5180.00	30.00~47.00	35.00	-65.85	N/A	-36	Pass
NVNT	ANT1	802.11a	5180.00	47.00~74.00	69.83	-65.98	N/A	-54	Pass
NVNT	ANT1	802.11a	5180.00	74.00~87.50	85.56	-65.42	N/A	-36	Pass
NVNT	ANT1	802.11a	5180.00	87.50~118.00	103.47	-65.44	N/A	-54	Pass
NVNT	ANT1	802.11a	5180.00	118.00~174.00	158.36	-64.68	N/A	-36	Pass
NVNT	ANT1	802.11a	5180.00	174.00~230.00	223.74	-64.23	N/A	-54	Pass
NVNT	ANT1	802.11a	5180.00	230.00~470.00	432.54	-64.17	N/A	-36	Pass
NVNT	ANT1	802.11a	5180.00	470.00~862.00	806.14	-63.05	N/A	-54	Pass
NVNT	ANT1	802.11a	5180.00	862.00~1000.00	906.86	-63.54	N/A	-36	Pass
NVNT	ANT1	802.11a 👞	5180.00	1000.00~5150.00	5099.92	-48.19	N/A	-30	Pass
NVNT	ANT1	802.11a	5180.00	5150.00~5350.00	5184.02	4.20	1	1	/
NVNT	ANT1	802.11a	5180.00	5350.00~26000.00	25094.84	-39.92	N/A	-30	Pass
NVNT	ANT1	802.11a	5200.00	30.00~47.00	39.98	-65.66	N/A	-36	Pass
NVNT	ANT1	802.11a	5200.00	47.00~74.00	69.42	-65.30	N/A	-54	Pass
NVNT	ANT1	802.11a	5200.00	74.00~87.50	86.27	-65.33	N/A	-36	Pass
NVNT	ANT1	802.11a	5200.00	87.50~118.00	115.12	-64.28	N/A	-54	Pass
NVNT	ANT1	802.11a	5200.00	118.00~174.00	160.03	-63.43	N/A	-36	Pass
NVNT	ANT1	802.11a	5200.00	174.00~230.00	228.31	-62.95	N/A	-54	Pass
NVNT	ANT1	802.11a	5200.00	230.00~470.00	430.30	-64.38	N/A	-36	Pass
NVNT	ANT1	802.11a	5200.00	470.00~862.00	771.03	-62.95	N/A	-54	Pass
NVNT	ANT1	802.11a	5200.00	862.00~1000.00	963.85	-63.29	N/A	-36	Pass
NVNT	ANT1	802.11a	5200.00	1000.00~5150.00	5122.89	-48.29	N/A	-30	Pass
NVNT	ANT1	802.11a	5200.00	5150.00~5350.00	5198.57	5.41	1	1	/
NVNT	ANT1	802.11a	5200.00	5350.00~26000.00	25046.66	-39.53	N/A	-30	Pass
NVNT	ANT1	802.11a	5240.00	30.00~47.00	46.52	-65.84	N/A	-36	Pass
NVNT	ANT1	802.11a	5240.00	47.00~74.00	67.02	-65.46	N/A	-54	Pass
NVNT	ANT1	802.11a	5240.00	74.00~87.50	76.76	-65.34	N/A	-36	Pass
NVNT	ANT1	802.11a	5240.00	87.50~118.00	110.91	-65.21	N/A	-54	Pass
NVNT	ANT1	802.11a	5240.00	118.00~174.00	121.07	-64.49	N/A	-36	Pass
NVNT	ANT1	802.11a	5240.00	174.00~230.00	199.98	-64.16	N/A	-54	Pass
NVNT	ANT1	802.11a	5240.00	230.00~470.00	444.47	-63.38	N/A	-36	Pass
NVNT	ANT1	802.11a	5240.00	470.00~862.00	837.93	-63.39	N/A	-54	Pass
NVNT	ANT1	802.11a	5240.00	862.00~1000.00	975.79	-63.96	N/A	-36	Pass
NVNT	ANT1	802.11a	5240.00	1000.00~5150.00	5119.57	-49.92	N/A	-30	Pass
NVNT	ANT1	802.11a	5240.00	5150.00~5350.00	5241.29	5.40	1	1	/
NVNT	ANT1	802.11a	5240.00	5350.00~26000.00	24529.72	-38.76	N/A	-30	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	30.00~47.00	32.86 🥏	-65.36	N/A	-36	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	47.00~74.00	59.24	-64.84	N/A	-54	Pass 🍏
NVNT	ANT1	802.11n(HT20)	5180.00	74.00~87.50	79.94	-65.91	N/A	-36	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	87.50~118.00	101.62	-65.20	N/A	-54	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	118.00~174.00	131.45	-64.47	N/A	-36	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	174.00~230.00	227.19	-64.92	N/A	-54	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	230.00~470.00	437.89	-64.66	N/A	-36	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	470.00~862.00	846.91	-64.28	N/A	-54	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	862.00~1000.00	884.20	-64.12	N/A	-36	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	1000.00~5150.00	5149.17	-48.95	N/A	-30	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	5150.00~5350.00	5185.07	3.65	1	/	/

6

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

DΔC

Report No.: DACE240718006RL004

NVNT ANT B02.1n(HT20) 5180.00 5380.00 2496.81 -38.49 NA -36.7 Pass NVNT ANT B02.1n(HT20) 5200.00 47.00=74.00 46.61 65.36 N/A -54 Pass NVNT ANT B02.1n(HT20) 5200.00 74.00=75.00 102.52 65.16 N/A -54 Pass NVNT ANT B02.1n(HT20) 5200.00 118.00-174.00 127.19 63.75 N/A -54 Pass NVNT ANT B02.1n(HT20) 5200.00 74.00=620.00 228.83 64.29 N/A -54 Pass NVNT ANT B02.1n(HT20) 5200.00 670.63 47.40 43.34 N/A -36 Pass NVNT ANT B02.1n(HT20) 5200.00 510.00 515.68 5.03 / / / / / / / / / / / / / / / / /											
NVNT ANT B02.1tn(HT20) 520.00 30.00-47.00 48.61 -65.36 N/A -36. Pass NVNT ANT1 B02.1tn(HT20) 520.00 74.00-47.50 79.24 -64.83 N/A -36 Pass NVNT ANT1 B02.1tn(HT20) 520.00 74.00-47.50 79.24 -64.83 N/A -36 Pass NVNT ANT1 B02.1tn(HT20) 520.00 118.00-74.00 127.19 -63.64 N/A -54 Pass NVNT ANT1 B02.1tn(HT20) 520.00 282.03 -64.23 N/A -54 Pass NVNT ANT1 B02.1tn(HT20) 520.00 852.03 -1 / / / / / / / / / 7 / / / N/A -36 Pass NVNT ANT1 802.1tn(HT20) 520.00 535.00 5145.57 -85.31 N/A -36 Pass NVNT ANT1		NVNT	ANT1	802.11n(HT20)	5180.00	5350.00~26000.00	24966.81	-39.49	N/A	-30	Pass
NVNT ANT B02.1tn(HT20) 5200.00 47.00-74.00 48.03 -65.08 N/A -54 Pass NVNT ANT1 B02.1tn(HT20) 5200.00 87.50-116.00 102.52 45.15 N/A -54 Pass NVNT ANT1 B02.1tn(HT20) 5200.00 118.00-174.00 122.19 45.75 N/A -54 Pass NVNT ANT1 B02.1tn(HT20) 5200.00 223.83 45.29 N/A -54 Pass NVNT ANT1 B02.1tn(HT20) 5200.00 230.00-470.00 427.40 45.36 N/A -34 Pass NVNT ANT1 B02.1tn(HT20) 5200.00 1000.00-5150.00 570.53 73.23 45.37 N/A -30 Pass NVNT ANT1 B02.1tn(HT20) 520.00 510.00 570.53 73.7 45.31 N/A -30 Pass NVNT ANT1 B02.1tn(HT20) 5240.00 74.00-72.00 32.73 65.31 N/A		NVNT	ANT1	802.11n(HT20)	5200.00	30.00~47.00	46.61	-65.36	N/A	-36	Pass
NVNT ANTI B02 111(H1720) 5200.00 75.00-97.50 72.24 -64.69 N/A 36 Pass NVNT ANTI B02 111(H1720) 5200.00 118.00-174.00 127.19 65.16 N/A -36 Pass NVNT ANTI B02 111(H1720) 5200.00 174.00-230.00 227.40 -63.44 N/A -54 Pass NVNT ANTI B02 111(H1720) 5200.00 427.40 -63.44 N/A -54 Pass NVNT ANTI B02 111(H1720) 5200.00 670.00-370.00 67.63 -63.44 N/A -36 Pass NVNT ANTI B02 111(H1720) 5200.00 6150.60-380.00 5145.78 -48.33 N/A -30 Pass NVNT ANTI B02 111(H1720) 520.00 30.73 -65.31 N/A -36 Pass NVNT ANTI B02 111(H1720) 520.00 30.73 -65.31 N/A -54 Pass NVNT <t< td=""><td></td><td>NVNT</td><td>ANT1</td><td>802.11n(HT20)</td><td>5200.00</td><td>47.00~74.00</td><td>48.03</td><td>-65.08</td><td>N/A</td><td>-54</td><td>Pass</td></t<>		NVNT	ANT1	802.11n(HT20)	5200.00	47.00~74.00	48.03	-65.08	N/A	-54	Pass
NVNT ANT1 802 11n(HT20) 5200.00 87.50-H8.00 127.19 -63.75 N/A -54 Pass NVNT ANT1 802 11n(HT20) 5200.00 174.00-230.00 223.83 64.29 N/A -54 Pass NVNT ANT1 802 11n(HT20) 5200.00 220.00-470.00 427.40 -63.84 N/A -56 Pass NVNT ANT1 802 11n(HT20) 5200.00 820.0-100.00 870.63 -62.95 N/A -56 Pass NVNT ANT1 802 11n(HT20) 5200.00 150.00-5300.00 5150.65 -63.1 -// / / / / / / -// / -// /		NVNT	ANT1	802.11n(HT20)	5200.00	74.00~87.50	79.24	-64.89	N/A	-36	Pass
NVNT ANT1 B02 11n(HT20) 5200.00 118.00-174.00 127.19 -63.75 N/A -36 Pass NVNT ANT1 B02 11n(HT20) 5200.00 174.00-230.00 227.40 -63.44 N/A -54 Pass NVNT ANT1 B02 11n(HT20) 5200.00 470.00-662.00 828.83 -63.69 N/A -54 Pass NVNT ANT1 B02 11n(HT20) 5200.00 160.00-6750.00 5145.57 -48.33 N/A -36 Pass NVNT ANT1 B02 11n(HT20) 5200.00 530.00-26000.00 25145.78 -38.78 N/A -30 Pass NVNT ANT1 B02 11n(HT20) 5240.00 74.00-74.00 58.19 -65.97 N/A -54 Pass NVNT ANT1 B02 11n(HT20) 5240.00 74.00-74.00 58.19 -65.31 N/A -54 Pass NVNT ANT1 B02 11n(HT20) 5240.00 74.00-74.00 72.27 -64.79 N/A		NVNT	ANT1	802.11n(HT20)	5200.00	87.50~118.00	102.52	-65.16	N/A	-54	Pass
NVNT ANT1 B02 11n(HT20) 5200.00 174.00-230.00 427.40 63.64 N/A -54 Pass NVNT ANT1 B02 11n(HT20) 5200.00 230.00-470.00 427.40 63.64 N/A -56 Pass NVNT ANT1 B02 11n(HT20) 5200.00 662.00-100.00 87.63 -62.95 N/A -36 Pass NVNT ANT1 B02 11n(HT20) 5200.00 5150.00-5550.00 5156.85 5.03 / / / / NVNT ANT1 B02 11n(HT20) 5200.00 5350.00-2800.00 231.73 -38.78 N/A -36 Pass NVNT ANT1 B02 11n(HT20) 5240.00 74.00-77.00 58.97 N/A -54 Pass NVNT ANT1 B02 11n(HT20) 5240.00 74.00-77.60 65.92 N/A -54 Pass NVNT ANT1 B02 11n(HT20) 5240.00 74.00-78.00 24.10 -84.19 N/A -54 Pass		NVNT	ANT1	802.11n(HT20)	5200.00	118.00~174.00	127.19	-63.75	N/A	-36	Pass
NVNT ANTI 802:11n(HT20) 5200.00 470.00 427.40 -63.64 NA -36 Pass NVNT ANTI 802:11n(HT20) 5200.00 470.00-862.00 828.33 -63.69 N/A -36 Pass NVNT ANTI 802:11n(HT20) 5200.00 820.00 5150.00 670.63 -42.95 N/A -36 Pass NVNT ANTI 802:11n(HT20) 5200.00 5150.00-5350.00 5145.67 -48.33 N/A -30 Pass NVNT ANTI 802:11n(HT20) 520.00 5150.00-5570 -38.78 N/A -36 Pass NVNT ANTI 802:11n(HT20) 5240.00 47.00-74.00 56.19 -45.57 N/A -54 Pass NVNT ANTI 802:11n(HT20) 5240.00 174.00-73.00 24.07 -46.19 N/A -54 Pass NVNT ANTI 802:11n(HT20) 5240.00 174.00-72.00 24.07 -44.79 N/A -54		NVNT	ANT1	802.11n(HT20)	5200.00	174.00~230.00	223.83	-64.29	N/A	-54	Pass
NVNT ANTI 802.11n(HT20) 5200.00 470.00-962.00 828.33 -63.89 N/A -54 Pass NVNT ANTI 802.11n(HT20) 5200.00 862.00-1000.00 870.63 -62.95 N/A -36 Pass NVNT ANTI 802.11n(HT20) 5200.00 1000.00-5160.00 5156.00 5145.75 -48.33 N/A -30 Pass NVNT ANTI 802.11n(HT20) 5200.00 30.00-47.00 33.7 -65.31 N/A -54 Pass NVNT ANTI 802.11n(HT20) 5240.00 74.00-74.00 58.19 -55.97 N/A -54 Pass NVNT ANTI 802.11n(HT20) 5240.00 174.00-73.00 24.00 -64.19 N/A -54 Pass NVNT ANTI 802.11n(HT20) 5240.00 174.00-73.00 24.00 -64.19 N/A -54 Pass NVNT ANTI 802.11n(HT20) 5240.00 100.00-5160.00 544.93 N/A		NVNT	ANT1	802.11n(HT20)	5200.00	230.00~470.00	427.40	-63.64	N/A	-36	Pass
NVNT ANTI 802.11n(HT20) 5200.00 862.00~1000.00 870.63 -42.25 N/A -36 Pass NVNT ANTI 802.11n(HT20) 5200.00 1000.00~5150.00 5145.57 -48.33 N/A -30 Pass NVNT ANTI 802.11n(HT20) 5200.00 550.00~5350.00 515.68 5.03 /		NVNT	ANT1	802.11n(HT20)	5200.00	470.00~862.00	828.33	-63.69	N/A	-54	Pass
NVNT ANT1 802.11r(HT20) 5200.00 1000.00~5150.00 5155.68 5.03 /		NVNT	ANT1	802.11n(HT20)	5200.00	862.00~1000.00	870.63	-62.95	N/A	-36	Pass
NVNT ANT1 802.11n(HT20) 520.00 5150.00-5350.00 25145.78 5.03 /		NVNT	ANT1	802.11n(HT20)	5200.00	1000.00~5150.00	5145.57	-48.33	N/A	-30	Pass
NVNT ANT1 802.11n(HT20) 520.00 6350.00-2600.00 25145.78 -38.78 N/A -30 Pass NVNT ANT1 802.11n(HT20) 5240.00 33.00-47.00 58.79 N/A -54 Pass NVNT ANT1 802.11n(HT20) 5240.00 74.00-87.50 76.76 -65.92 N/A -36 Pass NVNT ANT1 802.11n(HT20) 5240.00 174.00-720.00 224.00 -64.19 N/A -54 Pass NVNT ANT1 802.11n(HT20) 5240.00 174.00-720.00 224.00 -64.19 N/A -56 Pass NVNT ANT1 802.11n(HT20) 5240.00 862.00 688.46 -63.96 N/A -54 Pass NVNT ANT1 802.11n(HT20) 5240.00 862.00 688.46 -63.96 N/A -54 Pass NVNT ANT1 802.11n(HT20) 5240.00 5165.00-5380.00 524.97 N/A -30 Pass		NVNT	ANT1	802.11n(HT20)	5200.00	5150.00~5350.00	5195.68	5.03	1	1	/
NVNT ANT1 802.11n(HT20) 5240.00 30.00-47.00 33.73 -65.31 N/A -36 Pass NVNT ANT1 802.11n(HT20) 5240.00 47.00-74.00 58.19 -65.97 N/A -54 Pass NVNT ANT1 802.11n(HT20) 5240.00 47.00-74.00 94.72 -66.53 N/A -54 Pass NVNT ANT1 802.11n(HT20) 5240.00 174.00-230.00 224.00 -64.19 N/A -36 Pass NVNT ANT1 802.11n(HT20) 5240.00 174.00-230.00 224.00 -64.19 N/A -54 Pass NVNT ANT1 802.11n(HT20) 5240.00 862.00-1000.00 936.88 -64.31 N/A -36 Pass NVNT ANT1 802.11n(HT20) 5240.00 5160.00-535.00 524.92 4.51 / / / / / / / / / / / / / / /		NVNT	ANT1	802.11n(HT20)	5200.00	5350.00~26000.00	25145.78	-38.78	N/A	-30	Pass
NVNT ANT1 802.11n(HT20) 5240.00 47.00~74.00 58.19 -65.97 N/A -54 Pass NVNT ANT1 802.11n(HT20) 5240.00 74.00~75.00 94.72 -65.63 N/A -54 Pass NVNT ANT1 802.11n(HT20) 5240.00 118.00~174.00 117.27 -64.79 N/A -36 Pass NVNT ANT1 802.11n(HT20) 5240.00 174.00~230.00 224.00 -64.19 N/A -54 Pass NVNT ANT1 802.11n(HT20) 5240.00 230.00~470.00 380.02 -64.22 N/A -36 Pass NVNT ANT1 802.11n(HT20) 5240.00 160.00~5150.00 5145.85 -49.37 N/A -30 Pass NVNT ANT1 802.11n(HT20) 5240.00 150.00~530.00 5244.92 4.51 / / / / / / / / / / / / / / /		NVNT	ANT1	802.11n(HT20)	5240.00	30.00~47.00	33.73	-65.31	N/A	-36	Pass
NVNT ANT1 802.11n(HT20) 524.00 74.00-87.50 76.76 -65.92 N/A -36 Pass NVNT ANT1 802.11n(HT20) 524.00 87.50-118.00 94.72 -66.63 N/A -54 Pass NVNT ANT1 802.11n(HT20) 524.00 174.00-23.00 224.00 -64.19 N/A -54 Pass NVNT ANT1 802.11n(HT20) 524.00 230.00-470.00 380.02 -64.22 N/A -36 Pass NVNT ANT1 802.11n(HT20) 524.00 470.00-862.00 688.46 -63.36 N/A -54 Pass NVNT ANT1 802.11n(HT20) 524.00 100.00-5150.00 5145.85 -49.37 N/A -30 Pass NVNT ANT1 802.11n(HT20) 524.00 555.00-6204.00 2397.10 -39.45 N/A -36 Pass NVNT ANT1 802.11n(HT40) 519.00-74.00 59.82 -65.53 N/A -54 Pass		NVNT	ANT1	802.11n(HT20)	5240.00	47.00~74.00	58.19	-65.97	N/A	-54	Pass
NVNT ANT1 802.11n(HT20) 5240.00 87.50-118.00 94.72 -65.63 N/A -54 Pass NVNT ANT1 802.11n(HT20) 5240.00 116.00-174.00 122.27 -64.79 N/A -36 Pass NVNT ANT1 802.11n(HT20) 5240.00 230.00-470.00 380.02 -64.22 N/A -36 Pass NVNT ANT1 802.11n(HT20) 5240.00 470.00-862.00 698.46 -63.36 N/A -54 Pass NVNT ANT1 802.11n(HT20) 5240.00 1000.00-5150.00 5145.85 -49.37 N/A -30 Pass NVNT ANT1 802.11n(HT20) 5240.00 5350.00-2600.00 23970.10 -39.45 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5190.00 30.00-47.00 42.88 -65.46 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 174.00-49.63 83.81 -65.26 N/A		NVNT	ANT1	802.11n(HT20)	5240.00	74.00~87.50	76.76	-65.92	N/A	-36	Pass
NVNT ANT1 802.11n(HT20) 5240.00 118.00~174.00 172.27 -64.79 N/A -36 Pass NVNT ANT1 802.11n(HT20) 5240.00 174.00~230.00 224.00 -64.12 N/A -54 Pass NVNT ANT1 802.11n(HT20) 5240.00 470.00 380.02 -64.22 N/A -54 Pass NVNT ANT1 802.11n(HT20) 5240.00 470.00~862.00 698.46 -63.96 N/A -54 Pass NVNT ANT1 802.11n(HT20) 5240.00 1000.00~5150.00 5148.85 -49.37 N/A -30 Pass NVNT ANT1 802.11n(HT20) 5240.00 5350.00~2600.00 23970.10 -39.45 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 74.00~74.00 59.82 -65.46 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 74.00~87.50 83.81 -65.26 N/A		NVNT	ANT1	802.11n(HT20)	5240.00	87.50~118.00	94.72	-65.63	N/A	-54	Pass
NVNT ANT1 802.11n(HT20) 5240.00 174.00~230.00 224.00 -64.19 N/A -54 Pass NVNT ANT1 802.11n(HT20) 5240.00 230.00~470.00 380.02 -64.22 N/A -36 Pass NVNT ANT1 802.11n(HT20) 5240.00 620.0-1000.00 938.88 -64.31 N/A -36 Pass NVNT ANT1 802.11n(HT20) 5240.00 510.00~5350.00 5244.92 4.51 /		NVNT	ANT1	802.11n(HT20)	5240.00	118.00~174.00	172.27	-64.79	N/A	-36	Pass
NVNT ANT1 802.11n(HT20) 5240.00 230.00-470.00 380.02 -64.22 N/A -36 Pass NVNT ANT1 802.11n(HT20) 5240.00 470.00-862.00 698.46 -63.96 N/A -54 Pass NVNT ANT1 802.11n(HT20) 5240.00 1000.00-5150.00 5145.85 -49.37 N/A -30 Pass NVNT ANT1 802.11n(HT20) 5240.00 5150.00-5350.00 5244.92 4.51 /	1	NVNT	ANT1	802.11n(HT20)	5240.00	174.00~230.00	224.00	-64.19	N/A	-54	Pass
NVNT ANT1 802.11n(HT20) 5240.00 470.00~862.00 698.46 -63.96 N/A -54 Pass NVNT ANT1 802.11n(HT20) 5240.00 1000.00~5150.00 518.85 -49.37 N/A -36 Pass NVNT ANT1 802.11n(HT20) 5240.00 5150.00~5350.00 5244.92 4.51 / N/A 36 Pass N/NT ANT1 802.11n(HT40) 5190.00 174.00~87.50 83.81 -65.26 N/A -54 Pass NVNT ANT1 802.11n(HT40)		NVNT	ANT1	802.11n(HT20)	5240.00	230.00~470.00	380.02	-64.22	N/A	-36	Pass
NVNT ANT1 802.11n(HT20) 5240.00 862.00~1000.00 936.88 -64.31 N/A -36 Pass NVNT ANT1 802.11n(HT20) 5240.00 5150.00~5530.00 5244.92 4.51 / / / / / NVNT ANT1 802.11n(HT20) 5240.00 5350.00~2600.00 23970.10 -39.45 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5190.00 30.00~47.00 24.88 -65.46 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 74.00~87.50 83.81 -65.26 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 74.00~87.50 83.81 -65.48 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 230.0~47.00 464.14 -64.03 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 230.0~470.00 464.14 -64.03 <td></td> <td>NVNT</td> <td>ANT1</td> <td>802.11n(HT20)</td> <td>5240.00</td> <td>470.00~862.00</td> <td>698.46</td> <td>-63.96</td> <td>N/A</td> <td>-54</td> <td>Pass</td>		NVNT	ANT1	802.11n(HT20)	5240.00	470.00~862.00	698.46	-63.96	N/A	-54	Pass
NVNT ANT1 802.11n(HT20) 5240.00 1000.00-5150.00 5145.85 -49.37 N/A -30 Pass NVNT ANT1 802.11n(HT20) 5240.00 5150.00-5350.00 5244.92 4.51 / / / NVNT ANT1 802.11n(HT20) 5240.00 5350.00-2600.00 23970.10 -39.45 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 30.00-47.00 58.82 -65.53 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 74.00-87.50 83.81 -65.26 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 174.00-230.00 214.50 -64.60 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 174.00-230.00 214.50 -64.60 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 230.00-47.00 464.14 -64.00 N/A		NVNT	ANT1	802.11n(HT20)	5240.00	862.00~1000.00	936.88	-64.31	N/A	-36	Pass
NVNT ANT1 802.11n(HT20) 5240.00 5150.00-5350.00 5244.92 4.51 / / / NVNT ANT1 802.11n(HT20) 5240.00 5350.00-26000.00 23970.10 -39.45 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5190.00 30.00-47.00 42.88 -65.53 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 74.00-87.50 83.81 -65.26 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 74.00-87.50 83.81 -65.48 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 174.00-230.00 214.50 -64.60 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 230.00-470.00 464.14 -64.03 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 230.00-470.00 849.2 -63.95 N/A		NVNT	ANT1	802.11n(HT20)	5240.00	1000.00~5150.00	5145.85	-49.37	N/A	-30	Pass
NVNT ANT1 802.11n(HT20) 5240.00 5350.00-26000.00 23970.10 -39.45 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5190.00 47.00-74.00 52.82 -65.53 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 47.00-74.00 59.82 -65.53 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 87.50-118.00 92.63 -65.48 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 174.00-230.00 214.50 -64.60 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 170.00-280.00 729.11 -64.00 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 862.00-1000.00 889.92 -63.95 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 150.00-5350.00 5196.93 1.36 /		NVNT	ANT1	802.11n(HT20)	5240.00	5150.00~5350.00	5244.92	4.51	/	/	/
NVNT ANT1 802.11n(HT40) 5190.00 30.00~47.00 42.88 -65.46 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 47.00~74.00 59.82 -65.53 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 87.50~118.00 92.63 -65.48 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 118.00~174.00 149.06 -64.73 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 174.00~230.00 214.50 -64.60 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 230.00~470.00 464.14 -64.03 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 230.00~470.00 889.92 -63.95 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 5150.00~5350.00 5186.93 1.36 / <t< td=""><td></td><td>NVNT</td><td>ANT1</td><td>802.11n(HT20)</td><td>5240.00</td><td>5350.00~26000.00</td><td>23970.10</td><td>-39.45</td><td>N/A</td><td>-30</td><td>Pass</td></t<>		NVNT	ANT1	802.11n(HT20)	5240.00	5350.00~26000.00	23970.10	-39.45	N/A	-30	Pass
NVNT ANT1 802.11n(HT40) 5190.00 47.00-74.00 59.82 -65.53 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 74.00-87.50 83.81 -65.26 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 87.50-118.00 92.63 -66.48 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 118.00-174.00 149.96 -64.73 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 174.00-230.00 214.50 -64.60 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 470.00-862.00 729.11 -64.00 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 82.00-100.00 88.92 -63.95 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 5350.00-2600.00 2500.811 -39.19 N/A		NVNT	ANT1	802.11n(HT40)	5190.00	30.00~47.00	42.88	-65.46	N/A	-36	Pass
NVNT ANT1 802.11n(HT40) 5190.00 74.00-87.50 83.81 -65.26 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 87.50~118.00 92.63 -65.48 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 118.00~174.00 149.96 -64.73 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 174.00~230.00 214.50 -64.60 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 230.00~470.00 464.14 -64.00 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 470.00~862.00 729.11 -64.00 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 1000.00~5150.00 5148.34 -45.45 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 5350.00~2600.00 25008.11 -39.19 N/A		NVNT	ANT1	802.11n(HT40)	5190.00	47.00~74.00	59.82	-65.53	N/A	-54	Pass
NVNT ANT1 802.11n(HT40) 5190.00 87.50~118.00 92.63 -65.48 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 118.00~174.00 149.96 -64.73 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 174.00~230.00 214.50 -64.60 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 230.00~470.00 464.14 -64.03 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 470.00~862.00 729.11 -64.00 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 862.00~1000.00 889.92 -63.95 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 5150.00~5350.00 5196.93 1.36 / / / / / / / / / / / / / / /		NVNT	ANT1	802.11n(HT40)	5190.00	74.00~87.50	83.81	-65.26	N/A	-36	Pass
NVNT ANT1 802.11n(HT40) 5190.00 118.00~174.00 149.96 -64.73 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 174.00~230.00 214.50 -64.60 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 230.00~470.00 464.14 -64.03 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 470.00~862.00 729.11 -64.00 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 470.00~862.00 729.11 -64.00 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 100.00~5150.00 5148.34 -45.45 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5190.00 5350.00~2600.00 2500.811 -39.19 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5230.00 30.00~47.00 38.49 -66.05 N/A <td></td> <td>NVNT</td> <td>ANT1</td> <td>802.11n(HT40)</td> <td>5190.00</td> <td>87.50~118.00</td> <td>92.63</td> <td>-65.48</td> <td>N/A</td> <td>-54</td> <td>Pass</td>		NVNT	ANT1	802.11n(HT40)	5190.00	87.50~118.00	92.63	-65.48	N/A	-54	Pass
NVNTANT1802.11n(HT40)5190.00174.00~230.00214.50-64.60N/A-54PassNVNTANT1802.11n(HT40)5190.00230.00~470.00464.14-64.03N/A-36PassNVNTANT1802.11n(HT40)5190.00470.00~862.00729.11-64.00N/A-54PassNVNTANT1802.11n(HT40)5190.00862.00~1000.00889.92-63.95N/A-36PassNVNTANT1802.11n(HT40)5190.00100.00~5150.005148.34-45.45N/A-30PassNVNTANT1802.11n(HT40)5190.005150.00~5350.005196.931.36///NVNTANT1802.11n(HT40)5190.005350.00~26000.0025008.11-39.19N/A-30PassNVNTANT1802.11n(HT40)5230.0030.00~47.0038.49-66.05N/A-36PassNVNTANT1802.11n(HT40)5230.0047.00~74.0051.96-64.91N/A-54PassNVNTANT1802.11n(HT40)5230.0074.00~74.0051.96-64.91N/A-54PassNVNTANT1802.11n(HT40)5230.0074.00~74.0051.96-64.91N/A-54PassNVNTANT1802.11n(HT40)5230.00174.00~74.0051.96-65.51N/A-36PassNVNTANT1802.11n(HT40)5230.0018.00~174.00166.26 <t< td=""><td></td><td>NVNT</td><td>ANT1</td><td>802.11n(HT40)</td><td>5190.00</td><td>118.00~174.00</td><td>149.96</td><td>-64.73</td><td>N/A</td><td>-36</td><td>Pass</td></t<>		NVNT	ANT1	802.11n(HT40)	5190.00	118.00~174.00	149.96	-64.73	N/A	-36	Pass
NVNT ANT1 802.11n(HT40) 5190.00 230.00~470.00 464.14 -64.03 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 470.00~862.00 729.11 -64.00 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 862.00~1000.00 889.92 -63.95 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 1000.00~5150.00 5148.34 -45.45 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5190.00 5150.00~5350.00 5196.93 1.36 / / / / / NVNT ANT1 802.11n(HT40) 5190.00 5350.00~2600.00 25008.11 -39.19 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5230.00 30.00~47.00 38.49 -66.05 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 74.00~87.50 83.63		NVNT	ANT1	802.11n(HT40)	5190.00	174.00~230.00	214.50	-64.60	N/A	-54	Pass
NVNT ANT1 802.11n(HT40) 5190.00 470.00~862.00 729.11 -64.00 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5190.00 862.00~1000.00 889.92 -63.95 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 1000.00~5150.00 5148.34 -45.45 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5190.00 5150.00~5350.00 5196.93 1.36 / / / / NVNT ANT1 802.11n(HT40) 5190.00 5350.00~26000.00 25008.11 -39.19 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5230.00 30.00~47.00 38.49 -66.05 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 74.00~87.50 83.63 -65.51 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 174.00~87.50 83.63 -65.12		NVNT	ANT1	802.11n(HT40)	5190.00	230.00~470.00	464.14	-64.03	N/A	-36	Pass
NVNT ANT1 802.11n(HT40) 5190.00 862.00~1000.00 889.92 -63.95 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5190.00 1000.00~5150.00 5148.34 -45.45 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5190.00 5150.00~5350.00 5196.93 1.36 / / / / / NVNT ANT1 802.11n(HT40) 5190.00 5350.00~26000.00 25008.11 -39.19 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5230.00 30.00~47.00 38.49 -66.05 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 74.00~87.50 83.63 -65.51 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 74.00~87.50 83.63 -65.51 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 174.00~87.50 83.63 -65.		NVNT	ANT1	802.11n(HT40)	5190.00	470.00~862.00	729.11	-64.00	N/A	-54	Pass
NVNT ANT1 802.11n(HT40) 5190.00 1000.00~5150.00 5148.34 -45.45 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5190.00 5150.00~5350.00 5196.93 1.36 / / / / / NVNT ANT1 802.11n(HT40) 5190.00 5350.00~26000.00 25008.11 -39.19 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5230.00 30.00~47.00 38.49 -66.05 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 47.00~74.00 51.96 -64.91 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 74.00~87.50 83.63 -65.51 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 118.00~174.00 166.26 -63.57 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 174.00~230.00 216.64 -64		NVNT	ANT1	802.11n(HT40)	5190.00	862.00~1000.00	889.92	-63.95	N/A	-36	Pass
NVNT ANT1 802.11n(HT40) 5190.00 5150.00~5350.00 5196.93 1.36 / / / / NVNT ANT1 802.11n(HT40) 5190.00 5350.00~26000.00 25008.11 -39.19 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5230.00 30.00~47.00 38.49 -66.05 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 47.00~74.00 51.96 -64.91 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 47.00~87.50 83.63 -65.51 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 87.50~118.00 99.54 -65.12 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 118.00~174.00 166.26 -63.57 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 230.00~470.00 375.14 -64.06 N/A		NVNT	ANT1	802.11n(HT40)	5190.00	1000.00~5150.00	5148.34	-45.45	N/A	-30	Pass
NVNT ANT1 802.11n(HT40) 5190.00 5350.00~26000.00 25008.11 -39.19 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5230.00 30.00~47.00 38.49 -66.05 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 47.00~74.00 51.96 -64.91 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 74.00~74.00 51.96 -64.91 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 74.00~87.50 83.63 -65.51 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 87.50~118.00 99.54 -65.12 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 174.00~230.00 216.64 -64.33 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 230.00~470.00 375.14 -64.06 N/A <t< td=""><td></td><td>NVNT</td><td>ANT1</td><td>802.11n(HT40)</td><td>5190.00</td><td>5150.00~5350.00</td><td>5196.93</td><td>1.36</td><td>/</td><td>1</td><td>/</td></t<>		NVNT	ANT1	802.11n(HT40)	5190.00	5150.00~5350.00	5196.93	1.36	/	1	/
NVNT ANT1 802.11n(HT40) 5230.00 30.00~47.00 38.49 -66.05 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 47.00~74.00 51.96 -64.91 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 74.00~87.50 83.63 -65.51 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 74.00~87.50 83.63 -65.51 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 87.50~118.00 99.54 -65.12 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 118.00~174.00 166.26 -63.57 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 174.00~230.00 216.64 -64.33 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 230.00~470.00 375.14 -64.06 N/A -36		NVNT	ANT1	802.11n(HT40)	5190.00	5350.00~26000.00	25008.11	-39.19	N/A	-30	Pass
NVNT ANT1 802.11n(HT40) 5230.00 47.00~74.00 51.96 -64.91 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 74.00~87.50 83.63 -65.51 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 87.50~118.00 99.54 -65.12 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 87.50~118.00 99.54 -65.12 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 118.00~174.00 166.26 -63.57 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 174.00~230.00 216.64 -64.33 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 230.00~470.00 375.14 -64.06 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 470.00~862.00 763.80 -63.48 N/A <td< td=""><td></td><td>NVNT</td><td>ANT1</td><td>802.11n(HT40)</td><td>5230.00</td><td>30.00~47.00</td><td>38.49</td><td>-66.05</td><td>N/A</td><td>-36</td><td>Pass</td></td<>		NVNT	ANT1	802.11n(HT40)	5230.00	30.00~47.00	38.49	-66.05	N/A	-36	Pass
NVNT ANT1 802.11n(HT40) 5230.00 74.00~87.50 83.63 -65.51 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 87.50~118.00 99.54 -65.12 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 118.00~174.00 166.26 -63.57 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 174.00~230.00 216.64 -64.33 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 174.00~230.00 216.64 -64.33 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 230.00~470.00 375.14 -64.06 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 470.00~862.00 763.80 -63.49 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 862.00~1000.00 905.78 -63.48 N/A		NVNT	ANT1	802.11n(HT40)	5230.00	47.00~74.00	51.96	-64.91	N/A	-54	Pass
NVNT ANT1 802.11n(HT40) 5230.00 87.50~118.00 99.54 -65.12 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 118.00~174.00 166.26 -63.57 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 174.00~230.00 216.64 -64.33 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 174.00~230.00 216.64 -64.33 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 230.00~470.00 375.14 -64.06 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 470.00~862.00 763.80 -63.49 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 862.00~100.00 905.78 -63.48 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 100.00~5150.00 5096.33 -49.78 N/A		NVNT	ANT1	802.11n(HT40)	5230.00	74.00~87.50	83.63	-65.51	N/A	-36	Pass
NVNT ANT1 802.11n(HT40) 5230.00 118.00~174.00 166.26 -63.57 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 174.00~230.00 216.64 -64.33 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 230.00~470.00 375.14 -64.06 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 230.00~470.00 375.14 -64.06 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 470.00~862.00 763.80 -63.49 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 862.00~1000.00 905.78 -63.48 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 1000.00~5150.00 5096.33 -49.78 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5230.00 5150.00~5350.00 5237.22 1.87 / <td></td> <td>NVNT</td> <td>ANT1</td> <td>802.11n(HT40)</td> <td>5230.00</td> <td>87.50~118.00</td> <td>99.54</td> <td>-65.12</td> <td>N/A</td> <td>-54</td> <td>Pass 🦷</td>		NVNT	ANT1	802.11n(HT40)	5230.00	87.50~118.00	99.54	-65.12	N/A	-54	Pass 🦷
NVNT ANT1 802.11n(HT40) 5230.00 174.00~230.00 216.64 -64.33 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 230.00~470.00 375.14 -64.06 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 470.00~862.00 763.80 -63.49 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 470.00~862.00 763.80 -63.49 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 862.00~1000.00 905.78 -63.48 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 1000.00~5150.00 5096.33 -49.78 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5230.00 5150.00~5350.00 5237.22 1.87 / / / / NVNT ANT1 802.11n(HT40) 5230.00 5350.00~26000.00 25081.08 -39.66		NVNT	ANT1	802.11n(HT40)	5230.00	118.00~174.00	166.26	-63.57	N/A	-36	Pass
NVNT ANT1 802.11n(HT40) 5230.00 230.00~470.00 375.14 -64.06 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 470.00~862.00 763.80 -63.49 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 862.00~1000.00 905.78 -63.48 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 862.00~1000.00 905.78 -63.48 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 1000.00~5150.00 5096.33 -49.78 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5230.00 5150.00~5350.00 5237.22 1.87 / / / NVNT ANT1 802.11n(HT40) 5230.00 5350.00~26000.00 25081.08 -39.66 N/A -30 Pass		NVNT	ANT1	802.11n(HT40)	5230.00	174.00~230.00	216.64	-64.33	N/A	-54	Pass
NVNT ANT1 802.11n(HT40) 5230.00 470.00~862.00 763.80 -63.49 N/A -54 Pass NVNT ANT1 802.11n(HT40) 5230.00 862.00~1000.00 905.78 -63.49 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 1000.00~5150.00 5096.33 -49.78 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5230.00 5150.00~5350.00 5237.22 1.87 / / / NVNT ANT1 802.11n(HT40) 5230.00 5350.00~26000.00 25081.08 -39.66 N/A -30 Pass		NVNT	ANT1	802.11n(HT40)	5230.00	230.00~470.00	375.14	-64.06	N/A	-36	Pass
NVNT ANT1 802.11n(HT40) 5230.00 862.00~1000.00 905.78 -63.48 N/A -36 Pass NVNT ANT1 802.11n(HT40) 5230.00 1000.00~5150.00 5096.33 -49.78 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5230.00 5150.00~5350.00 5237.22 1.87 / / / NVNT ANT1 802.11n(HT40) 5230.00 5350.00~26000.00 25081.08 -39.66 N/A -30 Pass		NVNT	ANT1	802.11n(HT40)	5230.00	470.00~862.00	763.80	-63.49	N/A	-54	Pass
NVNT ANT1 802.11n(HT40) 5230.00 1000.00~5150.00 5096.33 -49.78 N/A -30 Pass NVNT ANT1 802.11n(HT40) 5230.00 5150.00~5350.00 5237.22 1.87 / / / / NVNT ANT1 802.11n(HT40) 5230.00 5350.00~26000.00 25081.08 -39.66 N/A -30 Pass		NVNT	ANT1	802.11n(HT40)	5230.00	862.00~1000.00	905.78	-63.48	N/A	-36	Pass
NVNT ANT1 802.11n(HT40) 5230.00 5150.00~5350.00 5237.22 1.87 / <th<< td=""><td></td><td>NVNT</td><td>ANT1</td><td>802.11n(HT40)</td><td>5230.00</td><td>1000.00~5150.00</td><td>5096.33</td><td>-49.78</td><td>N/A</td><td>-30</td><td>Pass</td></th<<>		NVNT	ANT1	802.11n(HT40)	5230.00	1000.00~5150.00	5096.33	-49.78	N/A	-30	Pass
NVNT ANT1 802.11n(HT40) 5230.00 5350.00~26000.00 25081.08 -39.66 N/A -30 Pass		NVNT	ANT1	802.11n(HT40)	5230.00	5150.00~5350.00	5237.22	1.87	/	/	/
		NVNT	ANT1	802.11n(HT40)	5230.00	5350.00~26000.00	25081.08	-39.66	N/A	-30	Pass

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

Page 78 of 98

DΔG

-

NE

Report No.: DACE240718006RL004

6. Transmitter emissions within bands

Condition	Antenna	Mode	Frequency (MHz)	Sub Band	Worst EIB Frequency (MHz)	Level (dBc)	Limit (dBc)	Result
NVNT	ANT1	802.11a	5180.00	Band1	5210.20	-47.90	-40.00	Pass
NVNT	ANT1	802.11a	5180.00	Band2	5470.00	-58.01	-47.00	Pass
NVNT	ANT1	802.11a	5200.00	Band1	5230.24	-48.47	-40.00	Pass
NVNT	ANT1	802.11a	5200.00	Band2	5470.00	-58.11	-47.00	Pass
NVNT	ANT1	802.11a	5240.00	Band1	5270.32	-48.29	-40.00	Pass
NVNT	ANT1	802.11a	5240.00	Band2	5480.20	-56.53	-47.00	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	Band1	5210.08	-47.05	-40.00	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	Band2	5470.92	-57.16	-47.00	Pass
NVNT	ANT1	802.11n(HT20)	5200.00	Band1	5230.12	-48.13	-40.00	Pass
NVNT	ANT1	802.11n(HT20)	5200.00	Band2	5470.00	-57.82	-47.00	Pass
NVNT	ANT1	802.11n(HT20)	5240.00	Band1	5270.32	-47.47	-40.00	Pass
NVNT	ANT1	802.11n(HT20)	5240.00	Band2	5480.10	-55.81	-47.00	Pass
NVNT	ANT1	802.11n(HT40)	5190.00	Band1	5252.64	-45.20	-40.00	Pass
NVNT	ANT1	802.11n(HT40)	5190.00	Band2	5724.34	-55.28	-47.00	Pass
NVNT	ANT1	802.11n(HT40)	5230.00	Band1	5310.08	-44.91	-40.00	Pass
NVNT	ANT1	802.11n(HT40)	5230.00	Band2	5724.69	-55.02	-47.00	Pass

ANT1_802_11a_band_2_5180_00

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

2

DAG

DPC	ale	NC.
שאפ	V1.0	Report No.: DACE240718006RL004
DAG	Transmitter unwanted emissions within the 5GHz RL	LAN band 2
20 Fr	Jency: 5230.00MHz	Limit EB • Band Max
0 -		
û -20		
		240
Ę 40		
-60 -		
5470M	/ 1000kHz, VBW: 30kHz, Sweep Point: 30001	5725MHz Frequency
LC.	. [2	
. (2	.6	

Report No.: DACE240718006RL004

7. Receiver spurious emissions

DΔC

Condition	Antenna	Mode	Frequency (MHz)	Range	Spur Freq(MHz)	Spur Freq Peak(dBm)	Spur Level RMS(dBm)	Limit(dBm)	Result
NVNT	ANT1	802.11a	5180.00	30.00~1000.00	200.01	-70.91	N/A	-57	Pass
NVNT	ANT1	802.11a	5180.00	1000.00~26000.00	6973.33	-61.59	N/A	-47	Pass
NVNT	ANT1	802.11a	5200.00	30.00~1000.00	160.04	-69.84	N/A	-57	Pass
NVNT	ANT1	802.11a	5200.00	1000.00~26000.00	6973.33	-60.73	N/A	-47	Pass
NVNT	ANT1	802.11a	5240.00	30.00~1000.00	160.01	-69.42	N/A	-57	Pass
NVNT	ANT1	802.11a	5240.00	1000.00~26000.00	6973.33	-61.20	N/A	-47	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	30.00~1000.00	160.01	-71.00	N/A	-57	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	1000.00~26000.00	6973.33	-61.04	N/A	-47	Pass
NVNT	ANT1	802.11n(HT20)	5200.00	30.00~1000.00	160.01	-70.03	N/A	-57	Pass
NVNT	ANT1	802.11n(HT20)	5200.00	1000.00~26000.00	6973.33	-61.05	N/A	-47	Pass
NVNT	ANT1	802.11n(HT20)	5240.00	30.00~1000.00	200.04	-69.83	N/A	-57	Pass
NVNT	ANT1	802.11n(HT20)	5240.00	1000.00~26000.00	6973.33	-60.82	N/A	-47	Pass
NVNT	ANT1	802.11n(HT40)	5190.00	30.00~1000.00	160.01	-70.67	N/A	-57	Pass
NVNT	ANT1	802.11n(HT40)	5190.00	1000.00~26000.00	6973.33	-60.83	N/A	-47	Pass
NVNT	ANT1	802.11n(HT40)	5230.00	30.00~1000.00	160.01	-70.37	N/A	-57	Pass
NVNT	ANT1	802.11n(HT40)	5230.00	1000.00~26000.00	6973.33	-61.34	N/A	-47	Pass

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

DAG	0	Receiver spurious emissions	Limit Trace
2	-20 -		. 6
E	-100 30		28000 Frequency(MHz)
			DAG

Report No.: DACE240718006RL004

8. Adaptivity

De

DΔC

	linity	-	_								
Condition	Antenna	Modulation	Frequency	AWGN (dBm/MHz)	CW (dBm)	Short Control Time(ms)	Short Control Ratio (%)	Limit (%)	Result		
NVNT	ANT1	802.11a	5180.00	-50	-35	4.27	8.53	<=10	Pass		
NVNT	ANT1	802.11a	5200.00	-50	-35	4.49	8.97	<=10	Pass		
NVNT	ANT1	802.11a	5240.00	-50	-35	4.72	9.44	<=10	Pass		
NVNT	ANT1	802.11n(HT20)	5180.00	-50	-35	4.41	8.82	<=10	Pass		
NVNT	ANT1	802.11n(HT20)	5200.00	-50	-35	3.65	7.29	<=10	Pass		
NVNT	ANT1	802.11n(HT20)	5240.00	-50	-35	4.18	8.37	<=10	Pass		
NVNT	ANT1	802.11ac(VHT20)	5180.00	-50	-35	4.57	9.14	<=10	Pass		
NVNT	ANT1	802.11ac(VHT20)	5200.00	-50	-35	3.50	6.99	<=10	Pass		
NVNT	ANT1	802.11ac(VHT20)	5240.00	-50	-35	3.71	7.41	<=10	Pass		
NVNT	ANT1	802.11n(HT40)	5190.00	-50	-35	3.00	6.01	<=10	Pass		
NVNT	ANT1	802.11n(HT40)	5230.00	-50	-35	4.64	9.29	<=10	Pass		
NVNT	ANT1	802.11ac(VHT40)	5190.00	-50	-35	4.52	9.04	<=10	Pass		
NVNT	ANT1	802.11ac(VHT40)	5230.00	-50	-35	3.80	7.60	<=10	Pass		
NVNT	ANT1	802.11ac(VHT80)	5210.00	-50	-35	4.52	9.04	<=10	Pass		
9. Adap	9. Adaptivity_COT_Channel_Occupancy_Time										

9. Adaptivity_COT_Channel_Occupancy_Time

Condition	Antenna	Modulation	Frequency	Max COT (ms)	Limit COT (ms)	Min Idle Time(ms)	Limit Idle Time (ms)	Result
NVNT	ANT1	802.11a	5180.00	0.61	<=13	1.53	>0.018	Pass
NVNT	ANT1	802.11a	5200.00	0.63	<=13	1.03	>0.018	Pass
NVNT	ANT1	802.11a	5240.00	1.77	<=13	1.58	>0.018	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	1.60	<=13	2.98	>0.018	Pass
NVNT	ANT1	802.11n(HT20)	5200.00	0.08	<=13	2.18	>0.018	Pass
NVNT	ANT1	802.11n(HT20)	5240.00	0.25	<=13	2.08	>0.018	Pass
NVNT	ANT1	802.11ac(VHT20)	5180.00	0.91	<=13	2.80	>0.018	Pass
NVNT	ANT1	802.11ac(VHT20)	5200.00	1.13	<=13	1.46	>0.018	Pass
NVNT	ANT1	802.11ac(VHT20)	5240.00	0.63	<=13	2.46	>0.018	Pass
NVNT	ANT1	802.11n(HT40)	5190.00	1.89	<=13	2.35	>0.018	Pass
NVNT	ANT1	802.11n(HT40)	5230.00	1.38	<=13	2.06	>0.018	Pass
NVNT	ANT1	802.11ac(VHT40)	5190.00	0.34	<=13	1.66	>0.018	Pass
NVNT	ANT1	802.11ac(VHT40)	5230.00	1.12	<=13	1.65	>0.018	Pass
NVNT	ANT1	802.11ac(VHT80)	5210.00	1.65	<=13	1.46	>0.018	Pass

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

NE

DAG

Report No.: DACE240718006RL004

DAG

DAG

,De

10. Receiver Blocking

DΔC

DAG

-

DAG

DAG

DAE

)AC

0

Condition	Antenna	Modulation	Frequency (MHz)	Wanted Power (dBm)	Blocking Frequency (MHz)	Blocking Power (dBm)	PER(%)	Limit(%)	Result
NVNT	ANT1	802.11a	5180.00	-58	4900	-34	0.10	≤10	Pass
NVNT	ANT1	802.11a	5180.00	-58	5000	-34	1.57	≤10	Pass
NVNT	ANT1	802.11a	5180.00	-58	5975	-34	1.34	≤10	Pass
NVNT	ANT1	802.11a	5240.00	-58	4900	-34	0.03	≤10	Pass
NVNT	ANT1	802.11a	5240.00	-58	5000	-34	1.56	≤10	Pass
NVNT	ANT1	802.11a	5240.00	-58	5975	-34	1.30	≤10	Pass

6

)DC

)De

DAG

)AC

DAG

)DE

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

)AC